
Persistent homology - Theory

Massimo Ferri1

1Dip. di Matematica and ARCES, Univ. di Bologna, Italia (Vision Mathematics group)

Work performed in collaboration with

Mattia G. Bergomi, Pietro Vertechi
Fundação Champalimaud, Lisboa, Portugal

Alessandro Mella, Antonella Tavaglione, Lorenzo Zuffi
Dip. di Matematica, Univ. di Bologna, Italia

M. Ferri Persistent homology - Theory Novosibirsk, 3-7 Feb. 2020 1 / 66



Outline

1 Introduction

2 Geometry vs. Topology

3 Persistent Betti Numbers

4 Two approaches to persistence

5 Persistence Diagrams

6 Complex vectorialization

7 Multidimensional persistence

M. Ferri Persistent homology - Theory Novosibirsk, 3-7 Feb. 2020 2 / 66



Introduction

1 Introduction

2 Geometry vs. Topology

3 Persistent Betti Numbers

4 Two approaches to persistence

5 Persistence Diagrams

6 Complex vectorialization

7 Multidimensional persistence

M. Ferri Persistent homology - Theory Novosibirsk, 3-7 Feb. 2020 3 / 66



Introduction

Persistent topology offers a modular, powerful tool for analyzing data
of various nature. A very large experimental body in heterogeneous
applications is available1.

So far, all applications needed to build a topological space (mostly the
space of a simplicial complex) on which to define a filtration and
compute homology.

1Ferri, M., Persistent topology for natural data analysis - A survey, In: LNAI, vol
10344, Springer (2017), 117-133
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Introduction

The Leitmotiv of this series of talks is: We don’t need to go through
complexes and homology for enjoying all the power of
persistence.

In the first two talks I’ll go through theory and applications of
“classical” persistence. Then I’ll illustrate a general definition of
persistence functions, which allows the use of persistence diagrams
without going through simplicial or topological constructions, and the
first examples of it.
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Geometry vs. Topology

Recognition (transformation groups)

The simplest type of shape recognition is by superimposition: One
tries to deform a template into the given image.

Problem: Different environments imply different transformation
groups; the wider the group, the greater is the freedom, but also the
computational complexity, due to a greater number of parameters.
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Geometry vs. Topology

Recognition (transformation groups)

A homeomorphism
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Geometry vs. Topology

Recognition (transformation groups)

But here there is a homeomorphism too!
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Geometry vs. Topology

Filtered spaces

In pattern recognition
and shape analysis,
geometry is too rigid,
but topology is too
free.
Homeomorphic
spaces - like mug
and donut - can be
very different from an
intuitive viewpoint.
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Geometry vs. Topology

Filtered spaces

Things may change by filtering two (even homeomorphic) spaces and
studying the topology of the subsets level by level.

In the picture, filtering by sublevel sets of the function “- ordinate”
reveals what we might be interested in: The concavity of the mug.
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Persistent Betti Numbers

Persistence modules

Definition 3.1 ( Sublevel sets)
Given a size pair (X , f ), with f : X → R continuous, given u ∈ R, the
sublevel set under u is the set Xu = {x ∈ X | f (x) ≤ u}.

Definition 3.2 (Persistence Module 2)
For all u, v ∈ R, u < v , the inclusion map ιu,v : Xu → Xv is continuous
and induces, at each degree k , a linear transformation
ιu,v∗ : Hk (Xu)→ Hk (Xv ).
These linear transformations, with their domains and ranges, build the
k -Persistence Module of (X , f ).

2Zomorodian, A., Carlsson, G., Computing Persistent Homology, Discr. Comput.
Geom. 33 (2004), 249–274
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Persistent Betti Numbers

Persistent Betti Numbers

Definition 3.3 (Persistent Betti Numbers3)
For all u, v ∈ R, u < v , the k -Persistent Betti Number (k -PBN) function
(also called Rank Invariant) assigns to the pair (u, v) the number

βk (u, v) = dim Im ιu,v∗ ,

i.e. the number of classes of k -cycles of Hk (Xu) which “survive” in
Hk (Xv ).

3Edelsbrunner, H., Harer, J., Persistent homology—a survey. In: Surveys on
Discrete and Computational Geometry, Contemp. Math. Amer. Math. Soc., 453 (2008),
257–282
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Persistent Betti Numbers

0-PBNs

For the pair (M, f ) of the picture, the 0-PBN function is shown.

The value 2 found at (u, v) = (a,b) means that, of the three connected
components of the sublevel set under b, only two come from under a.

The value 1 found at (u, v) = (a, c) means that the two connected
components under a merge into one in the sublevel set under c.
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Two approaches to persistence

The Bologna – Genova approach: “Size Functions”

Which object has “the same shape” as the upper circle? In our opinion,
this depends on the observer (his/her viewpoint, interest, tasks . . .).
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Two approaches to persistence

The Bologna – Genova approach: “Size Functions”

Teams at Bologna and Genova Universities contrived the 0-PBNs (then
called Size Functions) for facing various problems of shape
classification and pattern analysis.
They used several different filtering functions, in order to capture the
viewpoints, the shape ideas of the observer45.

4Frosini, P., Measuring shapes by size functions, Proc. of SPIE, Intelligent Robots
and Computer Vision X: Algorithms and Techniques, Boston, MA 1607 (1991),
122–133.

5Verri, A., Uras, C., Frosini, P., Ferri, M., On the use of size functions for shape
analysis, Biological Cybernetics 70, (1993), 99–107.
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Two approaches to persistence

The Colorado – Duke – Stanford approach: topology from
sampling

Independently, researchers at Colorado6, Duke7 and Stanford8

Universities devised PBNs for catching the topology of an object
through a cloud of sampling points.

6Robins, V., Computational Topology at Multiple Resolutions, PhD Thesis, Univ. of
Colorado, Boulder (2000)

7Edelsbrunner, H., Letcher, D. Zomorodian, A., Topological persistence and
simplification, Discrete Comput. Geom. 28 (2002), 511–533

8Carlsson, G., Zomorodian, A., Collins, A., Guibas, L., Persistence barcodes for
shapes. In: Proc. Symp. Geom. Process. (2004), 127–138
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Two approaches to persistence

The Colorado – Duke – Stanford approach: topology from
sampling

The filtering function is the radius of balls centered on the sampling
points, in a growing Vietoris-Rips complex. The persisting cycles
(whence the expression Persistent Homology) are likely to be the “true”
cycles of the sampled object.
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Persistence Diagrams

Characterizing properties

Set ∆+ = {(u, v) ∈ R |u < v}. For the k -PBN β
(X ,f )
k (short: β) of a size

pair (X , f ) these properties hold910:

Proposition 5.1

1 β(u, v) is nondecreasing in u and nonincreasing in v;
2 for all u1,u2, v1, v2 ∈ R such that u1 ≤ u2 < v1 ≤ v2 the following

inequality holds: β(u2, v1)− β(u1, v1) ≥ β(u2, v2)− β(u1, v2)

3 given an analogous pair (X ′, f ′), if a homeomorphism ψ : X → X ′

exists such that supx∈X |f (x)− f ′
(
ψ(x)

)
| ≤ h (h > 0), then for all

(u, v) ∈ ∆+ the inequality β
(X ,f )
k (u − h, v + h) ≤ β(X

′,f ′)
k (u, v) holds.

9Frosini, P., Landi, C., Size functions and formal series, Appl. Algebra Engrg.
Comm. Comput. 12 (2001), 327–349

10d’Amico, M., Frosini, P., Landi, C., Natural pseudo-distance and optimal matching
between reduced size functions, Acta Applicandae Mathematicae 109 (2010), 527–554
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Persistence Diagrams

A typical shape

Prop. 5.1 (parts 1, 2) implies the typical shape of the k-PBNs:
overlapping (possibly unbounded) triangles with horizontal and
vertical sides. Then all information can be condensed in some points
and lines; they form the k -th Persistence Diagrams (k -PD) of (X , f ).

Given a point p = (u, v) ∈ ∆+, let ε > 0 be such that u + ε < v − ε.
Then Prop. 5.1(2) implies that
µε(p) = β(u+ε, v−ε)−β(u−ε, v−ε)−β(u+ε, v +ε)+β(u−ε, v +ε) ≥ 0

Let then µ(p) = minε µε(p).

Definition 5.2
A cornerpoint is a point p ∈ ∆+ such that µ(p) > 0. Its multiplicity is
µ(p).

Cornerlines (often replaced by their points at infinity, called
cornerpoints at infinity) are defined in a similar way.
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Persistence Diagrams

A typical shape

From left to right: 1-PBN functions of mug and of donut, 1-PDs of mug and of
donut.
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Persistence Diagrams

A typical shape

An example of 0-PBNs and of the correspondig 1-PDs.
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Persistence Diagrams

Bottleneck distance

Definition 5.3
We assume all PDs finite. Given two persistence diagrams D,D′

(suitably made equipotent with points on the diagonal), for a fixed
bijection between D and D′, its weight is the max of the L∞ distance of
corresponding points. The bottleneck (or matching) distance d(D,D′) is
defined as the minimum weight among all bijections.
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Persistence Diagrams

Invariance

If the filtering function is invariant under a certain group of
transformations, the k -PBN functions enjoy the same invariance.

So, e.g., if we want to compare two images which differ by an affinity,
we can use an affinity-invariant filtering function and measure the
bottleneck distance between the corresponding persistence
diagrams. Next there are some examples.
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Persistence Diagrams

Invariance

Similitudes

M. Ferri Persistent homology - Theory Novosibirsk, 3-7 Feb. 2020 29 / 66



Persistence Diagrams

Invariance

Affinities
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Persistence Diagrams

Invariance

Homographies
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Persistence Diagrams

Natural pseudodistance

Definition 5.4
Given two size pairs (X , f ), (X ′, f ′), with X ,X ′ homeomorphic, their
natural pseudodistance is defined as

δ
(
(X , f ), (X ′, f ′)

)
= infγ supx∈X ‖f (x)− f ′(γ(x))‖∞

where γ varies in all possible homeomorphisms between X and X ′.
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Persistence Diagrams

Stability and universality

Prop. 5.1 (part 3) implies:

Proposition 5.5 (Stability)
If Dk (f ),Dk (f ′) are the k-PDs of pairs (X , f ), (X , f ′) respectively,

d
(
Dk (f ),Dk (f ′)

)
≤ δ
(
(X , f ), (X , f ′)

)

Moreover,

Proposition 5.6 (Universality)

If d̃ is a distance on persistence diagrams such that, for any
(X , f ), (X , f ′)

d̃
(
Dk (f ),Dk (f ′)

)
≤ δ
(
(X , f ), (X , f ′)

)
then

d̃
(
Dk (f ),Dk (f ′)

)
≤ d

(
Dk (f ),Dk (f ′)

)
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Persistence Diagrams

Easing the classification

Classification of persistence diagrams can be eased by various
constructions:

Landscapes [1,2]
Gaussian kernels [3,4]
Persistence paths [5]
Complex polynomials (see later)
. . .

Moreover, persistence diagrams can be easily fed to a neural network.
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Persistence Diagrams

Easing the classification

[1] Bubenik, P., Statistical topological data analysis using persistence landscapes,
The Journal of Machine Learning Research, 16 (2015), 77–102.

[2] Bubenik, P., Dłotko, P., A persistence landscapes toolbox for topological statistics,
Journal of Symbolic Computation, 78 (2017), 91–114

[3] Donatini, P., Frosini, P., Lovato, A., Size functions for signature recognition, Proc.
of the SPIE’s Workshop “Vision Geometry VII”, 3454 (1998), 178–183

4] Ferri, M., Frosini, P., Lovato, A., Zambelli, C., Point selection: A new comparison
scheme for size functions (With an application to monogram recognition), Proc.
ACCV’98, Springer LNCS 1351 vol. 1 (1998), 329-337

[5] Chevyrev, I., Nanda, V., Oberhauser, H., Persistence paths and signature features
in topological data analysis, IEEE Transactions on Pattern Analysis and Machine
Intelligence (2018), doi: 10.1109/TPAMI.2018.2885516
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Persistence Diagrams

Variations

Persistent Homology offers quite a lot beyond persistence diagrams:

Interleaving distance [1,2]
Zigzag persistence [3]
Extended persistence [4]
Filtering functions with circular values [5]
A∞-persistence [6]
Multidimensional filtering functions (see later)
. . .
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Persistence Diagrams

Variations

[1] Chazal, F., Cohen-Steiner, D., Glisse, M., Guibas, L.J., Oudot, S.Y., Proximity of
persistence modules and their diagrams. In: Proc. 25th Annual Symp. on Comput.
Geometry, ACM (2009), 237–246

[2] Lesnick, M., The theory of the interleaving distance on multidimensional
persistence modules, Found. of Comput. Math. 15 (2015), 613–650

[3] Carlsson, G., de Silva, V., Morozov, D., Zigzag persistent homology and
real-valued functions. In: Proc. 25th Annual Symp. on Comput. Geom., ACM (2009),
247–256

[4] Cohen-Steiner, D., Edelsbrunner, H., Harer, J., Extending persistence using
Poincaré and Lefschetz duality, Found. of Comput. Math., 9 (2009), 79–103

[5] de Silva, V., Vejdemo-Johansson, M., Persistent cohomology and circular
coordinates. In: Proc. 25th Annual Symp. on Comput. Geom., ACM (2009), 227–236

[6] Belchí, F., Murillo, A., A∞-persistence. Applicable Algebra in Engineering,
Communication and Computing, 26 (2015), 121-139
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Complex vectorialization

“Shortened” persistent homology

The bottleneck distance is the best possible. But it is computationally
heavy.

So we choose the following alternative11:
Warping the plane (due to the special role of the diagonal)
Considering the transformed PD points as complex numbers
Forming the complex polynomial having them as roots
Using only the first few coefficients for comparison.

11Ferri, M., Landi, C., Representing size functions by complex polynomials, Proc.
Math. Met. in Pattern Recognition 9, Moskow, November 16–19, 1999.

Di Fabio, B., Ferri, M., Comparing persistence diagrams through complex vectors, In:
ICIAP 2015 Part I; LNCS 9279, Springer (2015), 294-305.
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Complex vectorialization

Warping

T : ∆̄+ → C, T (u, v) = v−u
2 (cos(α)− sin(α) + i(cos(α) + sin(α)))

where α =
√

u2 + v2.

R : ∆̄+ → C, R(u, v) = v−u√
2

(cos(θ) + i sin(θ))

where θ = π(u + v).
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Complex vectorialization

Warping
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Complex vectorialization

Warping
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Complex vectorialization

Viète’s formulas

For a polynomial

p(t) = b0tn + b1tn−1 + · · ·+ bn−1t + bn

with roots z1, . . . , zn

Viètes formulas yield:

z1 + z2 + · · ·+ zn = −b1
b0

(z1z2 + · · ·+ z1zn) + (z2z3 + · · ·+ z2zn) + · · ·+ (zn−1zn) = b2
b0

(z1z2 · · · zn) = (−1)n bn
b0
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Complex vectorialization

Shortening the vectors

For each warped persistence diagram we choose the monic polynomial
(b0 = 1) with those roots and form the vector(

−b1,
√

b2,
3
√
−b3, . . . ,

N
√

(−1)NbN

)
/N

where N is the number of cornerpoints of the diagram.

For classification and retrieval we shorten the vector to the first k
elements (usually k = 5,10,20,50).
Finally, we compare by L1 distance.
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Multidimensional persistence

Extending the range

We define the following relation � (≺) in Rn: if ~u = (u1, . . . ,un) and
~v = (v1, . . . , vn), we write ~u � ~v (~u ≺ ~v ) if and only if uj ≤ vj (uj < vj )
for j = 1, . . . ,n. Let also ∆+ be now the set {(~u, ~v) ∈ Rn×Rn |~u ≺ ~v}.

We denote by X 〈~f � ~u〉 the sublevel set {p ∈ X |
−→
f (p) � −→u }.

Persistent Betti Number functions can then be defined in the same
way on ∆+ 12.

12Frosini, P., Mulazzani, M., Size homotopy groups for computation of natural size
distances, Bull. of the Belgian Math. Soc., 6 (1999), 455–464

Carlsson, G., Zomorodian, A., The theory of multidimensional persistence, Discr.
Comput. Geometry, 42 (2009), 71–93
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Multidimensional persistence

Extending the range
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Multidimensional persistence

The need for a multidimensional range

Filtering functions ϕ with Rn, n > 1, as a range, arise quite naturally in
applications (e.g. coordinates, RGB, curvature and torsion, . . . ).

In general, persistent topology of the single components of ϕ carries
less information than the whole function.

The next pictures illustrate the case of (C, ~ϕ′), (S, ~ϕ′′), where C and S
are a cube of edge length 2 and a sphere of diameter 2 respectively,
and ~ϕ′(x , y , z) = ~ϕ′′(x , y , z) = (|x |, |y |).

Sublevel sets of the single components are homotopically circles in
both cases, whereas they differ if the whole functions are taken into
account.
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Multidimensional persistence

Sublevel sets of the component |y | ≤
√

2
2 . The ones of |x | are just

rotated versions.

Sublevel sets of ~ϕ′ = ~ϕ′′ � (
√

2
2 ,
√

2
2 ).
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Multidimensional persistence

The problem of discontinuities

Recall that, when n = 1, discontinuities occur along line segments,
and are determined by the set of cornerpoints, i.e. by a submanifold
of dimension 0 of the 2-dimensional ∆+

In general, in the 2n-dimensional ∆+, the rôle of cornerpoints is
played by a (2n − 2)-dimensional submanifold.

No more possibility of representing the invariant by a formal series?
No more bottleneck distance?
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Multidimensional persistence

Admissible pairs

For 0-PBNs 13 then generally for k -PBNs 14 we have proved that
suitable foliations of ∆+ exist, along which the computation can be
reduced to the one-dimensional case, so back to cornerpoints.

13Silvia Biasotti, Andrea Cerri, Patrizio Frosini, Daniela Giorgi, Claudia Landi,
Multidimensional size functions for shape comparison, J. Math. Imaging and Vision, vol.
32 (2008), n. 2, 161–179

14Cagliari, F., Di Fabio, B., Ferri, M., One-dimensional reduction of multidimensional
persistent homology, Proc. Amer. Math. Soc. 138 (2010), 3003–3017
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Multidimensional persistence

Admissible pairs

For every vector~l = (l1, . . . , ln) in Rn such that
∥∥∥~l∥∥∥

2
= 1, and lj > 0 for

j = 1, . . . ,n, and for every vector ~b = (b1, . . . ,bn) in Rn such that
n∑

j=1
bj = 0, we shall say that the pair (~l , ~b) is admissible. Given an

admissible pair (~l , ~b), we define the half-plane π
(~l,~b) in Rn × Rn:{

~u = s~l + ~b
~v = t~l + ~b

for s, t ∈ R, with s < t .

(The use of the 1-norm for~l instead of the 2-norm is equivalent)
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Multidimensional persistence

Tame functions

Each admissible pair identifies a line in Rn. The corresponding
half-planes π

(~l,~b) foliate Rn × Rn .

A continuous function f : X → R is tame if it has a finite number of
homological critical values and the homology modules of all sublevel
sets are finite-dimensional for all i ∈ Z.

Let (X , ~ϕ) be a size pair. We shall say that ~ϕ is max-tame if, for every
admissible pair (~l , ~b), the function g(P) = max

j=1,...,n

{
ϕj (P)−bj

lj

}
is tame.
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Multidimensional persistence

1D reduction

Theorem 7.1

Let (~l , ~b) be an admissible pair and ~ϕ = (ϕ1, . . . , ϕn) : X → Rn be a
max-tame function. Then, for every (~u, ~v) = (s~l + ~b, t~l + ~b) ∈ π

(~l,~b), and
for

g(P) = max
j=1,...,n

{
ϕj(P)− bj

lj

}
the equality

β
(X ,~ϕ)
k (~u, ~v) = β

(X ,g)
k (s, t)

holds for all i ∈ Z and s, t ∈ R with s < t .
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Multidimensional persistence

Bottleneck distance (multidimensional case)

The previous theorem gives us the opportunity of defining a distance
between n-dimensional PBNs.

Definition 7.2

Let (X , ~ϕ′), (Y , ~ϕ′′) be two size pairs and β̄(X ,~ϕ
′)

k , β̄
(Y ,~ϕ′′)
k be the

respective PBN functions. Then the k -th bottleneck distance is

D(β̄
(X ,~ϕ′)
k , β̄

(Y ,~ϕ′′)
k ) = sup

(~l,~b)
min

j=1,...,n
lj · d(β

(X ,~ϕ′)
k , β

(Y ,~ϕ′′)
k )

where (~l , ~b) varies among all admissible pairs, and β(X ,~ϕ
′)

k , β(Y ,~ϕ
′′)

k are
the PBNs of the corresponding one-dimensional functions.

Stability and universality hold also in this case, but admissible pairs
and max-tameness are necessary ingredients.
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Multidimensional persistence

Example

We choose~l = (cos θ, sin θ) with 0 < θ < π
2 , and ~b = (a,−a) with

a ∈ R. The corresponding half-plane is parameterized as
u1 = s cos θ + a
u2 = s sin θ − a
v1 = t cos θ + a
v2 = t sin θ − a

with s, t ∈ R, s < t . In particular, we consider θ = π
4 ,a = 0.
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Multidimensional persistence

Example

k = 2 Left: cube; right: sphere.

t

s

0

1

a

t

s

0

1

a

⇒ D(ρ′C,∈, ρ
′′
S,∈) ≥

√
2

2 d(ρ′C,∈ ρ
′′
S,∈) = 0
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Multidimensional persistence

Example

k = 1 Left: cube; right: sphere.

t

s

0

t

s

0 3

ab

⇒ D(ρ′C,∞, ρ
′′
S,∞) ≥

√
2

2 d(ρ′C,∞ ρ′′S,∞) =
√

2
2

(√
2−1
2

)
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Multidimensional persistence

Example

k = 0 Left: cube; right: sphere.

t

s

2

1

0

a

t

s

2

1

0

a

⇒ D(ρ′C,′, ρ
′′
S,′) ≥

√
2

2 d(ρ′C,′ ρ
′′
S,′) =

√
2

2 (
√

2− 1)
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Multidimensional persistence

The 2D case

In the 2-dimensional case, admissible pairs are simply of the the type
(~l , ~b) =

(
(a,1− a), ((b,−b)

)
, so the 1-dimensional reduction leads us

to study the persistence diagrams of

f(a,b)(p) := max

{
f1(p)− b

a
,
f2(p) + b

1− a

}
In particular: is there a preferred slope for comparing (i.e.
distinguishing) two shapes?

Here are some pictures illustrating some results that we have
obtained by means of the 2D bottleneck distance. The objects that we
compare are displayed on the left of each figure. The color at the
point (a,b) represents the value of the distance of the corresponding
1D reduced persistence diagrams. The largest values are in red and
brown, the lowest ones are in blue.
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Multidimensional persistence

The 2D case
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Multidimensional persistence

The 2D case
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Multidimensional persistence

The 2D case
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Multidimensional persistence

The 2D case

Intuitive as it may appear, the conjecture that a = 1/2, i.e. slope =1, is
the best possible choice for 1D reduction in comparing shape, has not
yet been proved.

But in the study of the conjecture a very interesting phenomenon
emerged: monodromy 15.

15Cerri, A., Ethier, M., Frosini, P., A study of monodromy in the computation of
multidimensional persistence, Proc. 17th IAPR Int. Conf. on Discrete Geometry for
Computer Imagery, LNCS 7749, Springer (2013), 192–202
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Multidimensional persistence

Monodromy

There may be a pair
(
(ā,1− ā), (b̄,−b̄)

)
for which a cornerpoint of

multiplicity ≥ 2 occurs. If we move to a nearby pair(
(a′,1− a′), (b′,−b′)

)
the multiple cornerpoint doubles into two

simple ones.

What happens if we circle around
(
(ā,1− ā), (b̄,−b̄)

)
in the plane ab,

starting from
(
(a′,1− a′), (b′,−b′)

)
and coming back to the same pair

(i.e. to the same leaf of the foliation of R2 × R2)?

Of course the two simple cornerpoints move around and come back
to the same starting position, but INVERTED!

./monodromia/monodromy.mov

We are studying this phenomenon from various viewpoints.
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Multidimensional persistence

END OF THE FIRST PART

mattia.bergomi@neuro.fchampalimaud.org
massimo.ferri@unibo.it

alessandro.mella3@unibo.it
antonella.tavaglione@studio.unibo.it

pietro.vertechi@neuro.fchampalimaud.org
lorenzo.zuffi@studio.unibo.it

All our software concerning graph persistence can be found at
https://gitlab.com/mattia.bergomi/perscomb
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Introduction

Modularity and flexibility represent a relevant edge of persistent
homology with respect to other shape descriptors: whatever the input
pair (X , f ), the shape of the outcoming peristence diagram is
standard. This means that you can build an effective classifier of PDs
and you get a classifer of a wide variety of object types.

Add to this the fact that (algebraic) topology captures — by its very
nature — quality in a quantitative way, and you get a great tool for
classification and retrieval of 2D, 3D, 4D shapes, above all of a natural
origin, but also of more elusive “shapes”. Here are some examples,
ranging from the pioneering works of the ’90s up to recent research.
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Classification

1 Introduction

2 Classification

3 Retrieval
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Classification

Leukocytes
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Classification

Leukocytes

Goal1: classification (up to confusion eosinophile-neutrophile)

The space: boundary of starlike hull of cell

Filtering functions: along radii from centre of mass
Sum of grey tones
Max variation
Sum of pixel-pixel variations (in absolute value)

1Ferri, M., Lombardini, S., Pallotti, C., Leukocyte classification by size functions,
Proc. 2nd IEEE Workshop on Applications of Computer Vision, Sarasota, 1994 Dec.
5-7 (1994), 223–229
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Classification

Leukocytes

Filtering function: sum of grey tones along radii
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Classification

Monograms

Goal2: personal identification

Space1: outline of monogram

Filtering function:
Distance from centre of mass

Space2: a segment (horizontal)
Filtering functions:

Number of black pixels along segments (3 directions)
Number of pixel-pixel black-white jumps (3 directions)

2Ferri, M., Frosini, P., Lovato, A., Zambelli, C., Point selection: A new comparison
scheme for size functions (With an application to monogram recognition), Proc.
ACCV’98, Hong Kong 8–10 Jan. 1998, Springer LNCS 1351 vol. 1 (1998), 329–337
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Classification

Monograms
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Classification

Monograms

Fuzzy characteristic functions obtained from normalized inverse of
distance

Weighted average of characteristic functions

Live demo performed at ACCV’98
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Classification

Sign alphabet
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Classification

Sign alphabet

A. Verri, Genova (Italy)

Goal3: recognition. Signs performed with glove on uniform
background

The space: horizontal baseline segment

Filtering functions: for each point, maximum distance of a contour
point within a strip of fixed width, with 24 different strip orientations

3Uras, C., Verri, A., On the Recognition of the Alphabet of the Sign Language
through Size Functions, Proc. XII Int. Conf. IAPR, Jerusalem (1994), 334 – 338
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Classification

Sign alphabet

Live demo performed at the 12th IAPR Conference
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Classification

Sign alphabet

D. Kelly (Maynooth, Ireland)

Goal 4

The space: contour
Filtering functions: distance from four lines

4Kelly, D., McDonald, J., Lysaght, T., Markham, Ch., Analysis of Sign Language
Gestures Using Size Functions and Principal Component Analysis, Proc. IMVIP2008,
Portrush, Northern Ireland (2008), 31–36
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Classification

Human gait

J. Lamar-León, Habana (Cuba), R. Gonzalez-Diaz, Sevilla (Spain)

Goal5: personal identification and surveillance

The space: 3D stack of silhouettes

Filtering functions: distance from fixed planes

5Lamar-León, J., García-Reyes, E.B., Gonzalez-Diaz, R., Human gait identification
using persistent homology. In: CIARP 2012, LNCS 7441, Springer (2012), 244–251
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Classification

Tropical cyclones
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Classification

Tropical cyclones

S. Banerjee, Kolkata (India)

Goal6: evaluate risk and intensity of forming hurricane

The space: time interval

Filtering functions: two characteristic measures of cyclones:
Central Feature portion
Outer Banding Feature

6Banerjee, S., Size Functions in the Study of the Evolution of Cyclones, Int. J.
Meteorology 36(358) (2011), 39–46
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Classification

Galaxies
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Classification

Galaxies

S. Banerjee, Kolkata (India)

Goal7: classification

The space: the image rectangle

Filtering functions:
ratio between major and minor axis of isophotes
Ringermacher-Mead pitch
colour-based parameter

7Banerjee, S., Size functions in galaxy morphology classification, Int. J. Comput.
Appl. 100 (2014), 1–4
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Classification

Oil and gas reservoirs

Realization of an oil reservoir by SGS
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Classification

Oil and gas reservoirs

V.A. Baikov, Ufa; R.R. Gilmanov, A.A. Yakovlev, Sankt-Petersburg;
Ya.V. Bazaikin, I.A. Taimanov, Novosibirsk (Russia)

Goal 8: estimate differences between reservoirs and between digital
models of reservoirs

Space: cubical cell model

Filtering function: permeability

8Baikov, V. A., Gilmanov, R. R., Taimanov, I. A., Yakovlev, A. A., Topological
characteristics of oil and gas reservoirs and their applications, In: Towards Integrative
Machine Learning and Knowledge Extraction, LNAI 10344, Springer (2017), 182–193
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Classification

Mouth cells

A. Micheletti, Milano (Italy); G. Landini, London (UK)

Goal9: tumor diagnosis

Space: the image rectangle

Filtering function: distance from centre of mass

9Micheletti, A., Landini, G., Size functions applied to the statistical shape analysis
and classification of tumor cells, In: Proc. ECMI 2006, Mathematics in Industry 12,
Springer (2008), 538–542
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Classification

Mouth cells
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Classification

Melanocytic lesions

Melanocytic lesion images acquired under polarized light and mild
magnification

Problems:
No template for either class
Various diagnostic criteria
Morphological analysis not always sufficient
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Classification

Melanocytic lesions

Goal10: risk assessment.

We took a bundle of 45 lines through the center of mass, and for each
we compared the two halves of the lesion, separated by the line by
computing the distance of 0-PBN’s of the two halves. The resulting
functions provided the parameters we used.

Space: splitting line

Filtering functions:
distance from the splitting line
sum of luminance along perpendicular segments
sum of color variations along perpendicular segments

10Ferri, M., Stanganelli, I., Size functions for the morphological analysis of
melanocytic lesions, Int. J. Biomed. Imaging 2010 (2010), Article ID 621357,
doi:10.1155/2010/621357
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Classification

Melanocytic lesions

M. Ferri Persistent homology - Applications Novosibirsk, 3-7 Feb. 2020 27 / 54



Classification

Melanocytic lesions

We fed an SVM with parameters extracted from these functions and
from a bumpiness measure coming from the 0-PBNs of filtering function
distance from centre of mass:
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Classification

Hepatic lesions
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Classification

Hepatic lesions

G. Carlsson, Stanford (USA)

Goals11: classification of lesions, comparison of 1D and 2D
persistence

Space: the image rectangle

Filtering function: the pair (grey tone, distance from cell boundary)

11Adcock, A., Rubin, D., Carlsson, G., Classification of hepatic lesions using the
matching metric, Comput. Vis. Image Underst. 121 (2014), 36–42
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Classification

Brain cortex

M.K. Chung, Madison; P. Bubenik, Cleveland (USA); P.T. King,
Guelph (Canada)

Goal12: finding cues of autism

Space: cortical mesh obtained from MRI

Filtering function: cortical thickness

12Chung, M.K., Bubenik, P., Kim, P.T., Persistence diagrams of cortical surface data,
In: Proc. IPMI 2009, LNCS 5636, Springer (2009), 386–397
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Classification

Brain cortex

a (magnified in b): 0-PD; c (magnified in d): 1-PD. red: autism, blue: normal
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Classification

Brain connections

L.D. Lord, Oxford; F. Turkheimer, London (UK); F. Vaccarino, Torino
(Italy)

Goal13: understanding brain connection modification under the
assumption of psilocybine

Space: simplicial complex of cliques built on the graph of connections

Filtering function: - functional connectivity

13Lord, L.-D., Expert, P., Fernandes, H.M., Petri, G., Van Hartevelt, T.J., Vaccarino, F.,
Deco, G., Turkheimer, F., Kringelbach, M.L., Insights into brain architectures from the
homological scaffolds of functional connectivity networks, Front. Syst. Neurosci. 10, 85
(2016)
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Classification

Brain connections

Probability densities for H1 generators: placebo (left) and psilocybin (right)
treated
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Classification

Brain connections

Several other teams have studied the brain structure through persistent
homology of simplicial complexes built on a graph:

Giusti, C., Pastalkova, E.,Curto,C., Itskov,V., Clique topology reveals intrinsic
geometric structure in neural correlations, Proc. Natl. Acad. Sci. 112 (2015),
13455–13460

Reimann, M.W., Nolte, M., Scolamiero, M., Turner, K., Perin, R., Chindemi, G.,
Dłotko, P., Levi, R., Hess, K. and Markram, H., Cliques of neurons bound into cavities
provide a missing link between structure and function, Frontiers in Computational
Neuroscience, 11 (2017), 48

Sizemore, A. E., Giusti, C., Kahn, A., Vettel, J. M., Betzel, R. F., Bassett, D. S.,
Cliques and cavities in the human connectome, J. Comp. Neuroscience, 44 (2018),
115–145
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Classification

Robot navigation
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Classification

Robot navigation

R. Ghrist, Philadelphia (USA)

Goal14: planning robust path for autonomous vehicles

Space: the space of all paths from start to goal

Filtering function: probability of occupancy

14Bhattacharya, S., Ghrist, R., Kumar, V., Persistent homology for path planning in
uncertain environments, IEEE Transactions on Robotics, 31 (2015), 578–590
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Classification

Music

M.G. Bergomi, Lisboa (Portugal)

Goal15: distinguishing musical genres

Space: a modified Euler’s Tonnetz

Filtering function: note total duration

15Bergomi, M.G., Baratè, A., Di Fabio, B., Towards a topological fingerprint of music,
In: Proc. CTIC 2016. LNCS, vol. 9667, Springer (2016), 88–100
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Classification

Music
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Classification

Music

Among various other teams
studying music through
persistence, of particular
interest is the work of the
team of J.-Y. Liu, Taipei
(Taiwan), which uses
persistence landscapes
integrated in a convolutional
neural network.

Liu, J.-Y., Jeng, S.-K., Yang, Y.-H., Applying topological persistence in convolutional
neural network for music audio signals, arXiv preprint arXiv:1608.07373 (2016)

M. Ferri Persistent homology - Applications Novosibirsk, 3-7 Feb. 2020 40 / 54



Classification

Languages
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Classification

Languages

M. Marcolli, Pasadena (USA)

Goal16: understanding the structure of language networks

Space: Vietoris-Rips complex on the languages as points in a
Euclidean parameter space

Filtering function: distance

16Port, A., Gheorghita, I., Guth, D., Clark, J. M., Liang, C., Dasu, S., Marcolli, M.,
Persistent topology of syntax, Mathematics in Computer Science, 12 (2018), 33-50
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Classification

Collaboration networks

S. Pal, Cambridge (USA)

Goal17: studying the difference between collaboration networks
through their temporal evolution

Space: the simplicial complex of cliques on the collaboration graph

Filtering function: time

17Pal, S., Moore, T. J., Ramanathan, R., Swami, A. , Comparative topological
signatures of growing collaboration networks In: Proc. Int. Workshop on Complex
Networks, Springer (2017), 201–209
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Classification

Complex networks

B. Rieck, Kaiserslautern (Germany)

Goal18: analysis and comparison of networks

Space: the community clique simplicial complex built on the graph

Filtering function: interaction intensity

18Rieck, B., Fugacci, U., Lukasczyk, J., Leitte, H., Clique community persistence: A
topological visual analysis approach for complex networks IEEE Transactions on
Visualization and Computer Graphics, 24 (2017), 822–831
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Classification

Complex networks
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Retrieval

1 Introduction

2 Classification

3 Retrieval
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Retrieval

I shall show only two experiences of our team, one very old and one
recent inspired by the previous one.

The environment is the one of search engines which try to adapt to the
user taste and intent, in the context of Content Based Image Retrieval.
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Retrieval

Trittico

The user was supposed to provide three examples (as different as
possible) of the concept he/she is searching for.

A set of filtering functions yield corresponding 0-PDs for the three
objects.

The filtering functions whose PDs are most similar for the three
objects are then enhanced in a composite distance.
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Retrieval

Trittico

Note the appearance of crosses which are quite different from the input
ones
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Retrieval

Trittico

The system adapts to an implicit transformation group
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Retrieval

Relevance feedback

A first application of Trittico’s ideas was in a work using directly the
bottleneck distance between PDs19

We have then modified both the distance and the criterion20. The
distance is between the strings of the first few coefficients of the
complex polynomials associated to the 0-PDs. The experimentation
was performed on a set of melanocytic lesions.

19Giorgi, D., Frosini, P., Spagnuolo, M., Falcidieno, B., 3D relevance feedback via
multilevel relevance judgements, The Visual Computer, 26 (2010),1321–1338

20Angeli, A., Ferri, M., Monti, E., Tomba, I., Shortened persistent homology for a
biomedical retrieval system with relevance feedback, In: “Machine Learning and
Knowledge Extraction, CD-MAKE 2018”, LNCS 11015, Springer (2018), 282–292
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Retrieval

Relevance feedback

For each of the J designed filtering functions we get a different
distance among the objects of the dataset.

A first way of merging the J different distances d (1), . . . ,d (J) is
arithmetic average:

DAVG =
d (1) + · · ·+ d (J)

J

With this distance we extract a first output of L images x1, . . . , xL from
the dataset.
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Retrieval

Relevance feedback

We require the operator to provide his/her vector of (pseudo)distances
δ = (δ1, . . . , δl) of the L output images x1, . . . , xL from the query q.

We then form the matrix d whose element d r
s is d (s)(q, xr ) and look,

by a least square method, for nonnegative coefficients
λ = (λ1, . . . , λJ) minimizing ‖dλ− δ‖22.

Out of them we form the new distance

DOUT =
J∑

j=1

λjd (j)
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Retrieval

END OF THE SECOND PART

mattia.bergomi@neuro.fchampalimaud.org
massimo.ferri@unibo.it

alessandro.mella3@unibo.it
antonella.tavaglione@studio.unibo.it

pietro.vertechi@neuro.fchampalimaud.org
lorenzo.zuffi@studio.unibo.it

All our software concerning graph persistence can be found at
https://gitlab.com/mattia.bergomi/perscomb
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Introduction

Non(-necessarily)-topological persistence

We have seen that quite a lot of very different classification and analysis
problems can be faced by passing through the persistence paradigm:
once you get to associating persistence diagrams to the objects of
interest, then you have a whole lot of possibilities for condensing
information, for making vectors of them, for measuring distances etc.
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Introduction

Non(-necessarily)-topological persistence

So far, the way to take this train was mandatory: you had to organize
your data in the form of a “size pair” (X , f ), where X is either a
topological space or a simplicial complex, and f has X as a domain
and mathbbR as a range. The only freedom was in the choice of an
alternative range.

In the frequent case that data occur as a graph, the topology of the
graph as a simplicial complex is generally not meaningful. So an
auxiliary construction turned out to be necessary: the complex of
cliques, the complex of neighborhoods, the complex of clique
communities were the most common.
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Introduction

Non(-necessarily)-topological persistence

All things considered, what one actually needs is that data lead to
persistence diagrams. Is it possible to get PDs without necessary
going through topological spaces or simplicial complexes?

Our idea1 is to require as axioms those properties which logically
imply the structure of the persistent Betti number functions. This will
be the definition of Persistence Functions.

1Bergomi, M.G., Ferri, M., Vertechi, P., Zuffi, L., Beyond topological persistence:
Starting from networks (2019) preprint available at https://arxiv.org/abs/1901.08051
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Introduction

Non(-necessarily)-topological persistence

But it’s not enough to give an abstract notion, however general; that’s
why we also give two ways of producing persistence functions:
Coherent samplings and steady or ranging properties.

First it is necessary to specify the context in which this is possible: A
particular, but wide type of category.

Examples are given with (non-topological, non-simplicial) structures
in graphs.

A further, categorical extension is finally given.
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A categorical extension
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A categorical extension

Characterizing properties

Let’s see what we should generalize and what the widest possible
context could be. I now recall some properties of Persistent Betti
numbers (PBNs). Out of 1 and 2 all the structure of Persistence
Diagrams (PDs) arises; 3 grants stability.

Set ∆+ = {(u, v) ∈ R |u < v}. For the k -PBN β
(X ,f )
k (short: β) of a

size pair (X , f ) we have:

Proposition 2.1

1 β(u, v) is nondecreasing in u and nonincreasing in v;

2 for all u1,u2, v1, v2 ∈ R such that u1 ≤ u2 < v1 ≤ v2 the following inequality
holds: β(u2, v1)− β(u1, v1) ≥ β(u2, v2)− β(u1, v2)

3 given an analogous pair (X ′, f ′), if a homeomorphism ψ : X → X ′ exists
such that supx∈X |f (x)− f ′

(
ψ(x)

)
| ≤ h (h > 0), then for all (u, v) ∈ ∆+ the

inequality β(u − h, v + h) ≤ β(u, v) holds.
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3 given an analogous pair (X ′, f ′), if a homeomorphism ψ : X → X ′ exists
such that supx∈X |f (x)− f ′

(
ψ(x)

)
| ≤ h (h > 0), then for all (u, v) ∈ ∆+ the

inequality β(u − h, v + h) ≤ β(u, v) holds.
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A categorical extension

Concrete categories

We want to generalize 1, 2 and possibly 3 to a suitable category C.
For generalizing 3, we just need to substitute “homeomorphism” with
“C-isomorphism”. The problem is upstream: We need the possibility
of a filtration of a C-object in sublevel objects through a function.

A possibility appeared to be the notion of concrete topology, intuitively
corresponding to the notion of structured objects (groups, graphs,
topological spaces, etc.):

A concrete category is a pair (C,U) where C is a category and U is a
faithful functor U : C→ Set.

M. Ferri Non-topological persistence - Theory Novosibirsk, 3-7 Feb. 2020 10 / 46



A categorical extension

Concrete categories

We want to generalize 1, 2 and possibly 3 to a suitable category C.
For generalizing 3, we just need to substitute “homeomorphism” with
“C-isomorphism”. The problem is upstream: We need the possibility
of a filtration of a C-object in sublevel objects through a function.

A possibility appeared to be the notion of concrete topology, intuitively
corresponding to the notion of structured objects (groups, graphs,
topological spaces, etc.):

A concrete category is a pair (C,U) where C is a category and U is a
faithful functor U : C→ Set.

M. Ferri Non-topological persistence - Theory Novosibirsk, 3-7 Feb. 2020 10 / 46



A categorical extension

Concrete categories

We want to generalize 1, 2 and possibly 3 to a suitable category C.
For generalizing 3, we just need to substitute “homeomorphism” with
“C-isomorphism”. The problem is upstream: We need the possibility
of a filtration of a C-object in sublevel objects through a function.

A possibility appeared to be the notion of concrete topology, intuitively
corresponding to the notion of structured objects (groups, graphs,
topological spaces, etc.):

A concrete category is a pair (C,U) where C is a category and U is a
faithful functor U : C→ Set.

M. Ferri Non-topological persistence - Theory Novosibirsk, 3-7 Feb. 2020 10 / 46



A categorical extension

Categories with canonical subobjects

The basic idea was: In a concrete category (C,U) we pick up a
C-object X and define the filtering function on the corresponding set
U(X ), then filter X through the filtration of the set.

The problem is that determining subobjects of X through subsets of
U(X ) is absolutely non trivial. What is tricky, is the notion of
subobject. We need a canonical one.

In this context,for a subset Z
ι
↪−→ U(X ), we can consider subobjects

S
φ
↪−→ X such that U(φ)(U(S)) ⊆ Z . They form a full subcategory

{S φ
↪−→ X | U(φ)(U(S)) ⊆ Z} ⊆ CX that we will denote CX �Z .
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A categorical extension

Categories with canonical subobjects

Definition 2.2

We say that a concrete category (C,U) has canonical subobjects if the
following three conditions are verified:

1 C has pullbacks and the functor U preserves pullbacks.
2 for every object X ∈ C and for every subset Z ⊆ U(X ), if there is a

subobject T
χ
↪−→ X such that Z = U(χ)(U(T )) then the category CX �Z

has a terminal object U
υ
↪−→ X . We call such U

υ
↪−→ X a canonical

subobject associated to Z , denoted by U−1(Z ).

3 every morphism Y
χ−→ X can be factored as Y

φ−→W
ψ
↪−→ X where ψ is

a monomorphism and U(ψ)(U(W )) = U(χ)(U(Y )), or equivalently
U(φ) is surjective. If ψ is canonical, we will call the pair of morphisms

Y
φ−→W

ψ
↪−→ X a canonical factorization of χ.
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A categorical extension

Categories with canonical subobjects

As already mentioned, the preceding definition applies to a lot of usual
“working” categories: the ones of groups, rings, modules, simplicial
complexes, topological spaces, . . .

The definitions which follow can be given in any category with canonical
subobjects. Still, for the sake of clearness, subsequent definitions
and examples will be given in the category of undirected graphs,
which has canonical objects.
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A categorical extension

Graphs as complexes

Graphs will be simple throughout, and will be thought of as 1D
simplicial complexes. Homomorphisms, and in particular
isomorphisms, will be simplicial maps.

Given a weighted graph (G, f ), where G = (V ,E) and f : E → R is a
filtering function, one can extend f to a filtering function
f̄ : V ∪ E → R ∪ {∞} by defining it as∞ on isolated vertices and on
any other vertex v as the minimum value of f on its incident edges.

Therefore, a weighted graph gives rise to persistent Betti number
functions and persistence diagrams in a natural way.
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A categorical extension

Graphs as complexes
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A categorical extension

Natural pseudodistance

Let now (G, f ), (G′, f ′), with G = (V ,E),G′ = (V ′,E ′) be weighted
graphs and H be the (possibly empty) set of isomorphisms from G to G′.

Definition 2.3

The natural pseudodistance of (G, f ) and (G′, f ′) is

δ
(
(G, f ), (G′, f ′)

)
=

{
∞ if H = ∅
infφ∈H supe∈E |f (e)− f ′

(
φ(e)

)
| otherwise
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Persistence functions

1 Introduction

2 A categorical extension

3 Persistence functions

4 Rank-based persistence
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Persistence functions

Persistence functions

Recall that ∆+ = {(u, v) ∈ R |u < v}, ∆ = {(u, v) ∈ R |u = v} and
∆

+
= ∆+ ∪∆.

Let (G, f ) be any weighted graph. For each t ∈ R, the sublevel graph Gt
is the subgraph of G induced by f−1((−∞, t ]

)
.

Assume we have a function ΛG defined on all inclusions between
subgraphs of G, with values in the nonnegative integers, and such that
ΛG(ι) = 0 if ι has the empty set as domain. Define λ(G,f )(u, v) = ΛG(ι),
where ι is the inclusion of Gu into Gv .
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Persistence functions

Persistence functions

Definition 3.1 (Persistence function)

All functions λ(G,f ) : ∆+ → Z are said to be persistence functions if
conditions 1 and 2 are satisfied; they are said to be stable persistence
functions if also 3 holds:

1 λ(G,f )(u, v) is nondecreasing in u and nonincreasing in v ;
2 for all u1,u2, v1, v2 ∈ R such that u1 ≤ u2 < v1 ≤ v2 the following

inequality holds:
λ(G,f )(u2, v1)− λ(G,f )(u1, v1) ≥ λ(G,f )(u2, v2)− λ(G,f )(u1, v2)

3 given an analogous pair (G′, f ′), if an isomorphism ψ : G→ G′ exists
such that supe∈E |f (e)− f ′

(
ψ(e)

)
| ≤ h (h > 0), then for all

(u, v) ∈ ∆+ the inequality λ(G,f )(u − h, v + h) ≤ λ(G′,f ′)(u, v) holds.
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Persistence functions

Stability

Remark 3.2

A set of theorems holds, granting that any persistence function
(conditions 1 and 2) λ(G,f ) has the same structure as Persistent Betti
Numbers functions.

In particular, it can be summarized by a persistence diagram D(f ) with
the usual cornerpoints (proper and at infinity).
d
(
D(f ),D(f ′)

)
will be the usual bottleneck distance.

Theorem 3.3 (Stability)

For weighted graphs (G, f ), (G′, f ′) as above, if λ(G,f ) and λ(G′,f ′) are
stable then

d
(
D(f ),D(f ′)

)
≤ δ

(
(G, f ), (G′, f ′)

)
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Persistence functions

Stability

Related with stability, we have the problem of universality: Is the
inequality of Thm. 3.3 the best one that we can obtain from persistence
diagrams?

This issue can only be addressed by ad hoc constructions.
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Persistence functions

Coherent samplings

A first way of building persistence functions is the following.

Definition 3.4 (Coherent sampling)

A coherent sampling V is the assignment to each graph G, where
G = (V ,E) of a set V(G) of subsets of V ∪ E , such that the following
conditions 1 and 2 hold; it will be said to be a stable coherent sampling
if also condition 3 holds:

1 each V(G) is finite (possibly empty);
2 if G is a subgraph of H, then each element of V(G) is contained in

exactly one element of V(H);
3 if ψ : G→ G′ is an isomorphism, then V(G′) = ψ

(
V(G)

)
.

For each inclusion ι : G→ H let Λ(ι) be the number of elements of
V(H) containing at least one element of V(G).
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Persistence functions

Coherent samplings

Proposition 3.5

Let a coherent sampling V be given; for all graphs G = (V ,E), for all
filtering functions f : E → R, let λ(G,f ) : ∆+ → Z be defined by
λ(G,f )(u, v) = Λ(ι(u,v)) where ι(u,v) : Gu → Gv is the inclusion
homomorphism.
Then the functions λ(G,f ) are persistence functions. If the coherent
sampling is stable, so are the persistence functions.
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Persistence functions

Example 1: Blocks

We recall that in a (loopless) graph G a cut vertex (or separating
vertex) is a vertex v ∈ V (G) whose deletion (along with incident
edges) makes the number of connected components of G increase. A
block is a connected graph which does not contain any cut vertex. A
block of a graph G is a maximal subgraph H such that H is a block.

Proposition 3.6
The assignment B, which maps each graph G to the set of its blocks, is
a stable coherent sampling.
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Persistence functions

Example 1: Blocks

Definition 3.7

Given a weighted graph (G, f ), we call persistent block number the
function bl(G,f ) : ∆+ → Z which maps the pair (u, v) to the number of
blocks of Gv containing at least one block of Gu.

Corollary 3.8
bl(G,f ) is a stable persistence function.
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Persistence functions

Example 1: Blocks
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Persistence functions

Example 1: Blocks

We can then associate to bl(G,f ) a persistent block diagram Dbl(f ) with
all classical features.

Theorem 3.9 (Universality)

If d̃ is a distance for persistent block diagrams such that

d̃
(
Dbl(f ),Dbl(f ′)

)
≤ δ

(
(G, f ), (G′, f ′)

)
for any persistent block diagrams Dbl(f ), Dbl(f ′) of weighted graphs
(G, f ), (G′, f ′), with G, G′ isomorphic, then

d̃
(
Dbl(f ),Dbl(f ′)

)
≤ d

(
Dbl(f ),Dbl(f ′)

)

M. Ferri Non-topological persistence - Theory Novosibirsk, 3-7 Feb. 2020 27 / 46



Persistence functions

Example 1: Blocks
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Example of the construction needed for universality of bl .
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Persistence functions

Example 2: Edge-blocks

We recall that in a graph G a cut edge (or bridge) is an edge
e ∈ E(G) whose deletion makes the number of connected
components of G increase. We define an edge-block as a connected
graph which contains at least one edge, but does not contain any cut
edge. An edge-block of a graph G is a maximal subgraph H such that
H is an edge-block.

Proposition 3.10
The assignment E , which maps each graph G to the set of its
edge-blocks, is a stable coherent sampling. �

The definition of a persistent edge-block number function ebl(G,f ), its
stability and universality also hold.
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Persistence functions

Example 2: Edge-blocks

M. Ferri Non-topological persistence - Theory Novosibirsk, 3-7 Feb. 2020 30 / 46



Persistence functions

Steady and ranging

Given a graph G = (V ,E), let F : 2V∪E → {true, false} be any feature.
We call F-set any set A ⊆ V ∪ E such that F (A) = true.

Let now the weighted graph (G, f ) be given. Given any real number w ,
we shall say that A ⊆ V ∪ E is an F -set at level w if it is an F -set of the
subgraph Gw .
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Persistence functions

Steady and ranging

Definition 3.11 (Steady and ranging)

We call A ⊆ V ∪ E a steady F -set (or simply an s-F -set) at (u, v)
((u, v) ∈ ∆+) if it is an F -set at all levels w with u ≤ w ≤ v .
We call A a ranging F -set (or simply an r-F -set) at (u, v) if there exist
levels w ≤ u and w ′ ≥ v at which it is an F -set.

Let SF(G,f )(u, v) be the set of s-F -sets at (u, v) and let RF(G,f )(u, v) be
the set of r-F -sets at (u, v).
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Persistence functions

Steady and ranging

Proposition 3.12

The function which assigns to (u, v) ∈ ∆+ the number |SF(X ,f )(u, v)| is
a persistence function.

Proposition 3.13

The function which assigns to (u, v) ∈ ∆+ the number |RF(X ,f )(u, v)| is
a persistence function.
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Persistence functions

Example: Eulerian sets

Given any graph G = (V ,E), we define Eu : 2V∪E → {true, false} to
yield true on a set A if and only if A is a set of vertices whose induced
subgraph of G is nonempty, connected, Eulerian and maximal with
respect to these properties; in that case A is said to be a Eu-set of G.

Let now (G, f ) be a weighted graph. We apply Def. 3.11 to feature Eu
for a weighted graph (G, f ).
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Persistence functions

Example: Eulerian sets

Definition 3.14
Given any real number w , the set of vertices A is a Eu-set at level w if it
is a Eu-set of the subgraph Gw .

It is a steady Eu-set (an s-Eu-set) at (u, v) ((u, v) ∈ ∆+) if it is a Eu-set
at all levels w with u ≤ w ≤ v .

It is a ranging Eu-set (an r-Eu-set) at (u, v) if there exist levels w ≤ u
and w ′ ≥ v at which it is a Eu-set.

SEu(G,f )(u, v) and REu(G,f )(u, v) are respectively the sets of s-Eu-sets
and of r-Eu-sets at (u, v).
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Persistence functions

Example: Eulerian sets

Proposition 3.15

The function σeu which assigns to (u, v) ∈ ∆+ the number
|SEu(G,f )(u, v)| and the function %eu which assigns to (u, v) ∈ ∆+ the
number |REu(G,f )(u, v)| are persistence functions.
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Persistence functions

Example: Eulerian sets

M. Ferri Non-topological persistence - Theory Novosibirsk, 3-7 Feb. 2020 37 / 46



Persistence functions

Example: Eulerian sets

Both functions can be proved to be unstable.

The example of next figure shows that the function σeu is not stable: In
fact, the maximum absolute value of the weight difference on the same
edges is 1, and σ(G,f )(4.5− 1,10 + 1) = 1 > 0 = σ(G,g)(4.5,10), against
Condition 3 of Def. 3.1.

The instability of %eu is proved analogously.
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Persistence functions

Example: Eulerian sets

Instability of σeu: Filtering function f left, g right.
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Rank-based persistence

1 Introduction

2 A categorical extension

3 Persistence functions

4 Rank-based persistence
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Rank-based persistence

Categorical persistence functions

Coherent samplings are a direct generalization of 0-PBNs. The
nature of general k -PBNs has suggested a still wider generalization2:
rank-based persistence, of which k -PBNs and persistence functions
are particular classes of examples.

Definition 4.1 (Categorical persistence function)
Let D be a category. We say that a lower-bounded function
p : Morph(D)→ Z is a categorical persistence function if, for all
u1 → u2 → v1 → v2, the following inequalities hold:

1 p(u1→ v1) ≤ p(u2→ v1) and p(u2→ v2) ≤ p(u2→ v1).

2 p(u2→ v1)− p(u1→ v1) ≥ p(u2→ v2)− p(u1→ v2).

2Bergomi, M.G., Vertechi, P., Rank-based persistence (2019), preprint available at
https://arxiv.org/abs/1905.09151
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Rank-based persistence

(R,≤)-indexed diagrams

Also the notion of filtered object (which already generalizes the one of
size pair (X , f ) we have dealt with so far) can be widened.

Definition 4.2 ((R,≤)-indexed diagram)

Given a category C, a (R,≤)-indexed diagram in C is a functor from
(R,≤) to C.

Since ∆
+ is in 1-1 correspondence with Morph(R,≤), given a

categorical persistence function on C and an (R,≤)-indexed diagram in
C, we get an integer valued function on ∆

+ with the same features as a
persistence function (and as PBNs), and the possibility to condense
information in a persistence diagram.
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Rank-based persistence

Rank functions

In classical persistence, dimension (of homology modules and
submodules) plays a central role. This can be generalized too.

Definition 4.3 (Rank function)

Let R be an Abelian category. Given a lower-bounded function
r : Obj(R)→ Z, we say that r is a rank function if:

1 For any monomorphism A ↪→ B, r(A) ≤ r(B)

2 For any epimorphism B � D, r(B) ≥ r(D)

3 For all short exact sequence A ↪→ B � D, r(A) + r(D) = r(B) + r(0)

A ranked category (R, r) is an Abelian category R equipped with a rank
function r .
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Rank-based persistence

Rank functions

The definition can actually be given in the wider context of “regular”
categories.

Proposition 4.4
Given a ranked category (R, r) and a functor F : C→ R, the function
r ◦ im ◦ F is a categorical persistence function on C.
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Rank-based persistence

Rank functions

Figure 3: From the classical to the categorical framework.

Classical framework Categorical framework
Topological spaces Source category C
Vector spaces Regular target category R
Dimension Rank function on R
Homology functor Arbitrary functor from C to R
Filtration of topological spaces (R,≤)-indexed diagram in C
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Rank-based persistence

END OF THE THIRD PART
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All our software concerning graph persistence can be found at
https://gitlab.com/mattia.bergomi/perscomb
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Applications of steady and ranging

Steady and ranging hubs

We now apply the persistence functions coming from ranging and
steady sets, together with a smart idea of V. Kurlin, to the study of
“hubs” in networks. As always, (G, f ) is given, with G = (V ,E).
The property we are going to use gives false for all subsets of V ∪ E
apart from the singletons formed by vertices whose degree is greater
than or equal to the degree of all their neighbors:

Definition 1.1

A temporary hub (t-hub) at level u is a vertex of Gu whose degree is
greater than or equal to the degree of its neighbors.
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Applications of steady and ranging

Steady and ranging hubs

Definition 1.2

A steady hub (s-hub) at (u, v) ((u, v) ∈ ∆+) is a vertex which is a t-hub
at all levels w with u ≤ w ≤ v .

Definition 1.3

A ranging hub (r-hub) at (u, v) ((u, v) ∈ ∆+) is a vertex such that there
exist levels w ≤ u and w ′ ≥ v at which it is a t-hub.
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Applications of steady and ranging

Steady and ranging hubs

We define σ(G,f ) : ∆+ → Z as follows: For every (u, v) ∈ ∆+, σ(G,f )(u, v)
is the number of s-hubs at (u, v).

Proposition 1.4

σ is a persistence function.

We define %(G,f ) : ∆+ → Z as follows: For every (u, v) ∈ ∆+, %(G,f )(u, v)
is the number of r-hubs at (u, v).

Proposition 1.5

% is a persistence function.

Both functions can be proved to be unstable.
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Applications of steady and ranging

Hub selection

Finally, we use Kurlin’s widest diagonal gap for selecting the top s- and
r-hubs.

V. Kurlin, A fast persistence-based segmentation of noisy 2D clouds with provable
guarantees Pattern Recognition Letters, 83 (2016), 3–12
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Applications of steady and ranging

Example 1: airports

From now on I report WORK IN PROGRESS, not necessarily as
satisfatory as we could wish . . ..

A first application of the search for relevant hubs has been done on a
set of major North-American airports. The edges connect airports
between which there are regular flights.

As filtering functions we use:

distance
weekly flight frequency
their product

and their opposites (+their maximum)
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Applications of steady and ranging

Example 1: airports

M. Ferri Non-topological persistence - Applications Novosibirsk, 3-7 Feb. 2020 9 / 36



Applications of steady and ranging

Example 1: airports (distance)
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Applications of steady and ranging

Example 1: airports (distance)
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Applications of steady and ranging

Example 1: airports (max - frequency)
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Applications of steady and ranging

Example 1: airports (max - frequency)
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Applications of steady and ranging

Example 2: European languages

A second application is on languages of the European Union plus
Turkish:

Castilian Catalan Croatian Czech Danish
Dutch English Finnish French Galitian
German Greek Hungarian Italian Polish
Portuguese Romanian Swedish Turkish

The graph is complete.

Filtering function is the opposite of the percentage of common
properties (+ its max).
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Applications of steady and ranging

Example 3: Les Misérables

We now study the network
formed by the 77 main
characters of Les Misérables,
with 254 edges, each
representing the simultaneous
presence of the incident
vertices in at least one scene.

Each edge is labeled with the
number of such scenes. As
filtering function we take the
inverse of this number.
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Applications of steady and ranging

Example 3: Les Misérables
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Applications of steady and ranging

Example 4: Set persistence: a non-graph example

Let a grey-tone image be given, as a function f : D → R, where
D = {1, . . . ,M} × {1, . . . ,N} ⊂ Z2.

Fix a positive integer k . We define the neighbor set of a pixel x = (i , j)
as

Nk (x) = {x ′ = (i ′, j ′) ∈ D | i ′ = i + m, j ′ = j + n, −k ≤ m,n ≤ k}

Definition 1.6
Fix positive integers m,n . Set D′ = {x ∈ D | |Nk (x)| > m + n}. We say
that a pixel x ∈ D′ is active at level u ∈ R (briefly an A-pixel at level u) if
the following conditions are satisfied

1 |Nk (x) ∩ f−1([−∞,u])| ≥ m

2 |Nk (x)− f−1([−∞,u])| ≤ n
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Applications of steady and ranging

Example 4: Set persistence: a non-graph example

Note that |Nk (x) ∩ f−1([−∞,u])| is monotonically non-decreasing with
u, so (the singleton formed by) a pixel is a ranging-A-pixel at (u, v) if
and only if it is a steady-A-pixel at (u, v).

Let α(u, v) be the number of steady-A-pixels at (u, v).

Proposition 1.7
α is a persistence function.
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Applications of steady and ranging

Example 4: Set persistence: a non-graph example

Now, for a given image we can build the persistence diagram relative to
α and pick up cornerpoints (ū, v̄) whose persistence (also called
lifetime) v̄ − ū exceeds a given threshold t . The sets of steady-A-pixels
at those pairs (ū, v̄) may build reasonable contours for the image.

This is what we have done in the next examples, compared with the
classical Canny algorithm, for images with more and more noise.
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Applications of steady and ranging

Persistent Edge Detection

(a) Original (b) Canny (c) Ours: t = 5

(d) Ours: t = 10 (e) Ours: t = 15 (f) Ours: t = 20
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Cornerpoint selection

1 Applications of steady and ranging

2 Cornerpoint selection

3 Conclusions
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Cornerpoint selection

Ziqqurat

We are developing a new (somewhat self-referential) selection
method for the cornerpoints of a given persistence diagram.

The idea is to rank clusters of cornerpoints and to select one
cornerpoint out of each cluster. To do so, we build a polyhedron
(“ziqqurat”) with steps, whose corners correspond to cornerpoints, so
that all corners of the ziqqurat belong to a same plane. We then filter
the ziqqurat moving that plane parallel to itself.

We so form a rather poor persistence diagram: all cornerpoints are on
the same vertical line. On that line the rank is given by ordinate.
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Cornerpoint selection

Ziqqurat

Let D be a persistence diagram with a finite set of cornerpoints;
assume all multiplicities equal to 1. Also assume that all points on the
diagonal ∆ belong to D. Also add a cornerpoint at (−∞,+∞).

For every (u, v) ∈ R2 we define the legacy η
(
(u, v)

)
=

max{ũ − ṽ | (ũ, ṽ) ∈ D, ũ ≤ u, ṽ ≥ v}

Now define the ziqqurat ZD as

ZD = {(u, v ,w) ∈ R3 | η
(
(u, v)

)
> −∞, w ≤ η

(
(u, v)

)
}

Now we can consider the persistence diagram D of the pair (ZD, f )
with filtering function f = u − v − w .
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Cornerpoint selection

Ziqqurat
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Cornerpoint selection

Ziqqurat

(a) Original (b) Persistence diagram (c) Segmentation

The result with kernel size ks = 1, m = 2, n = 7
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Cornerpoint selection

Ziqqurat

(a) Original (b) Persistence diagram (c) Segmentation

Figure 7: The result with kernel size ks = 2, m = 8, n = 18
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Conclusions

Signatures of data by persistence diagrams are possible also without
the need of topological constructions.

Although most of our examples are in graph theory, the categorical
setting promises an extension to a much wider context.

Here we have presented tentative applications of two general
construction methods for persistence functions:

Coeherent samplings
Steady and ranging sets.
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Conclusions

THANKS FOR YOUR ATTENTION
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massimo.ferri@unibo.it

alessandro.mella3@unibo.it
antonella.tavaglione@studio.unibo.it

pietro.vertechi@neuro.fchampalimaud.org
lorenzo.zuffi@studio.unibo.it

All our software concerning graph persistence can be found at
https://gitlab.com/mattia.bergomi/perscomb
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