Topological data analysis (TDA) based machine learning models for biomolecular data analysis

Kelin Xia

School of Physical and Mathematical Sciences, School of Biological Sciences, Nanyang Technological University

Winter school on topological data analysis at Novosibirsk State University, Feb 3-8, 2020

Fund: ASPIRE, NTU-JSPS, MOE-Tier 1(2017,2018,2019), MOE-

Tier 2(2018)

Archive Gene Expression Omnibu GenBank Celebrates 25 years of service

News & Comment Research Careers & Jobs Home Volume 487 Issue 7407 Article News

NOTCAGE

GCTTACGATC

TCTAGCTAGA

TTACGATTCG

COTAGTCIAG

CACAGAT

GATCTAGCTA

CACAGA

TCTAGC

GCCGT CGCC GATCOCCOTA

TCGATCGCCG

CCGTATGTCG

TGTAGATCCC

GCTTACGATC

CTTACGATCG ATCGCCGTA

COALCOT

TACGATTCOC

CTNCCTNGAT CGATCGCC

GTATGTCGAC

CGCCGTATGT

ATCGATCGCC

GATC

ATGTCGAACG TCGTAGTCTA

CGTATGTCAC GTAGTCAGAT

AGCTGCACAG ATCTAGCTAG

NATURE | NEW S

Gene data to hit milestone

With close to one million gene-expression data sets

Deep learning

At last – a computer program that can beat a champion Go player PAGE 484

ALL SYSTEMS GO

Statistic learning

Manifold learning

Impact of Uncertainty

ncertainty analysis

How to deal with big data?

Pattern recognition

Graph modeling and analysis

Growth Rat

Market Size

Peak Share

Ramp Up

C&M Yearly Costs M&S Yearly Expense

Combined Uncertainty

Margin Share Duration

Representation and Feature Learning

"The success of machine learning algorithms generally depends on data representation..."

Y. Bengio, etc, "Representation Learning: A Review and New Perspectives"

"The deep learning research aims at discovering learning algorithms that discover multiple levels of distributed representations...

Y. Bengio, "Deep Learning of Representations: Looking Forward

Feature learning is key to data analysis!

Fukushima (1980) – Neo-Cognitron; LeCun (1998) – Convolutional Neural Networks (CNN);...

Molecular descriptors (>5000) directly determine the performance of learning models!

Common chemical descriptors for QSAR/QSPR analysis		
Chemical descriptors	Based on	Examples
Theoretical descriptors		
0D	Molecular formula	Molecular weights, atom counts, bond counts
1D	Chemical graph	Fragment counts, functional group counts
2D	Structural topology	Weiner index, Balaban index, Randic index, BCUTS
3D	Structural geometry	WHIM, autocorrelation, 3D-MORSE, GETAWAY
4D	Chemical conformation	Volsurf, GRID, Raptor
Experimental descriptors		
Hydrophobic parameters	Hydrophobicity	Partition coefficents (logP), hydrohobic substituent constant (π)
Electronic parameters	Electronic properties	Acid dissociation constant, Hammett constant
Steric parameters	Steric properties	Taft steric constant, Charton's constant

Topological Data Analysis (TDA)

Topological invariant; Homology; Homotopy; Simplicial complex; Morse theory; Reeb graph;

Computational Geometry; Computational topology; Algebraic topology

Topological invariant--Betti number

Properties that are preserved under continuous deformation!

Topological data analysis

Point cloud data

 β_k

Topological space

Vietoris-Rips complex

Simplicial complex

Chain group: $C_k(K, \mathbb{Z}_2)$

= Rank (H_k)

The topological information can be calculated!!

Opportunities, challenges and promises

Opportunities from topological methods:

New approach for big data characterization and classification.
 Dramatic reduction of dimensionality and data size.
 Applicable to a variety of fields.

Challenges with topological methods:

Geometric methods are inundated with structural details.
 Topology incurs too much reduction of original information.
 Topology is hardly used for quantitative prediction.

Promises from persistent homology: ✓ Embeds geometric information in topological invariants. ✓ Bridges the gap between geometry and topology.

```
Researchers:
Frosini (1991),
Robins (2000),
Edelsbrunner, Letscher and Zomorodian (2002),
Kaczynski, Mischaikow and Mrozek (2004),
Zomorodian and Carlsson (2005),
Ghrist (2008),
Dey and Wang(2009),
```

Softwares: Javaplex, Perseus, Dipha, Dionysus,

.....

Persistent homology and persistent barcodes

PHA of fullerene C60

(Xia, Feng, Tong & Wei, JCC, 2015)

Fullerene isomers

(Xia, Feng, Tong & Wei, JCC, 2015)

Biomolecular topological fingerprint (TF)

TF for alpha helix

Slicing method

Topological fingerprints of DNA

TF for beta barrel

 β_1

 β_2

 β_1

 β_2

Topic--Topological analysis of protein folding (Xia & Wei, JCC, 2015) FO **F300 F600 F900** 10아 β_1 β_1 β_1 β_1 0L C Δ 10 β_2 β_2 β_2 FO **F300 ID:1UBQ F600 F900**

The protein folding process can be characterized by a proposed two dimensional filtration representation

2D persistence for protein unfolding

ID:1UBQ

(Xia & Wei, JCC, 2015)

PHA for multiresolution representations

(Xia & Wei, JCB, 2015)

Multiresolution of the virus capsid

Betti-0

Betti-2

Topic—Atom in molecule

second and third eigenvalue, mean curvature isosurfaces.

PHA for hydrogen-bonding network

Ion crystal structure fingerprint

Water hydrogen-bonding fingerprint

(Xia, PCCP, 2018)

 $\beta_{1 \ 10}$

 $eta_{\scriptscriptstyle 0}$ 10

Two morphological types of ion aggregation

NaCl systems with concentrations: 1M, 2M, 3M, 4M and 5M

Type 1: local clusters

KSCN systems with concentrations: 1M, 3M, 5M, 7M and 10M

Type 2: extended ion network.

Two types of hydrogen-bonding networks

(c₁)

1

0.8

0.6

0.4

0.2

0

1

O-Network (NaCl)

H₂O-Network (KSCN)

Weighted persistent homology

- > Weighted alpha complex;
- > Weighted Vietoris-Rips;
- k-distance based models;
- > Rigidity function based models;
- > Weighted clique rank homology;
- > Physics-aware models;
- > Weighted simplicial homology;

Localized Persistent homology (LPH)

- New filtration
- Weighted boundary map

Interactive Persistent homology (IPH)

(Cang, Mu, Wei, PLOS Comp. Biol., 2018)

WPH for DNA classification

PH VS Interactive PH (GC)

TDA based machine learning models

(Pun, Xia and Lee, submitted, 2020)

Topological fingerprint based machine learning method

Protein domains: 85% Accuracy

Hemoglobins in their relaxed and taut forms: 80% accuracy

55 classification tasks of protein superfamilies over **1357 proteins from Protein Classification Benchmark Collection: 82% accuracy**

(Cang, Mu, Wu, Opron, Xia and Wei, MBMB, 2015)

Recent progress in TDA based drug design

Collaborator Guowei Wei

MSU. USA

TDA is based on the multiscale simplicial complex

***** Graph models and measurements:

Graph Laplacian; Fiedler Eigenvalue; Fiedler eigenvector; Shortest path; Clique; Cluster coefficient; Closeness; Centrality; Betweenness; Modularity; Cheeger constant; Erdos number; Percolation...

* Simplicial complex models and measurements:

Combinatorial Laplacian; Hodge theory; Betti number; Euler characteristics; Homology; Cohomology; Morse theory; Knot polynomials...

* Multiscale simplicial complex:

Persistent homology; Persistent cohomology...

Persistent Spectral theory (PerSpect)

Spectral models

- **Gamma** Spectral graph
- Spectral simplicial complex
- Spectral hypergraph

Filtration

- □ Nested sequence of Graphs
- Nested sequence of Simplicial Complexes
- Nested sequence of Hypergraph Laplacian

 $G^{0} \subseteq G^{1} \subseteq \dots \subseteq G^{m}$ $K^{0} \subseteq K^{1} \subseteq \dots \subseteq K^{m}$ $H^{0} \subseteq H^{1} \subseteq \dots \subseteq H^{m}$

PerSpect=Spectral models+Filtration

- Persistent spectral graph
- Persistent spectral simplicial complexes
 - Persistent spectral hypergraph

Persistent spectral simplicial complex

Boundary operator

$$B_k(i,j) = \begin{cases} 1, & \text{if } \sigma_i^{k-1} \subset \sigma_j^k \text{ and } \sigma_i^{k-1} \sim \sigma_j^k \\ -1, & \text{if } \sigma_i^{k-1} \subset \sigma_j^k \text{ and } \sigma_i^{k-1} \not \sim \sigma_j^k \\ 0, & \text{if } \sigma_i^{k-1} \not \subset \sigma_j^k. \end{cases}$$

Combinatorial Laplacian (Hodge Laplacian)

$$\mathbf{L}_k = \mathbf{B}_k^T \mathbf{B}_k + \mathbf{B}_{k+1} \mathbf{B}_{k+1}^T$$

Multiplicity of zero eigenvalues (Persistent multiplicity) from PerSpect simplicial complex is equivalent to persistent Betti number.

PerSpect variables change with filtration parameter and incorporate in them related geometric information.

Ŕ

Ŕ

6

à

Variational multiscale modeling

Geometric flow for noise reduction

Geometric modeling of biomolecules

Delaunay triangulation based mesh generation

First and second fundamental form (Feng, Xia, etc., JCC, 2013)

Gaussian curvature

Differential geometry based solvation model

The total functional:

$$G_{\text{total}}^{\text{PB}}[S,\Phi] = \int_{\Omega} \left\{ \gamma |\nabla S| + pS + S \left[-\frac{\epsilon_m}{2} |\nabla \Phi|^2 + \Phi \rho_m \right] + (1-S) \left[-\frac{\epsilon_s}{2} |\nabla \Phi|^2 - k_B T \sum_{\alpha} \rho_{\alpha 0} \left(e^{-\frac{q_\alpha \Phi + U_\alpha - \mu_{\alpha 0}}{k_B T}} - 1 \right) \right] \right\} d\mathbf{r}.$$

The generalized Poisson-Boltzmann equation:

$$-\nabla \cdot \left(\epsilon(S)\nabla\Phi\right) = S\rho_m + (1-S)\sum_{\alpha} q_{\alpha}\rho_{\alpha 0}e^{-\frac{q_{\alpha}\Phi + U_{\alpha} - \mu_{\alpha 0}}{k_B T}}$$

The generalized mean curvature flow equation:

$$\frac{\partial S}{\partial t} = |\nabla S| \left[\nabla \cdot \left(\gamma \frac{\nabla S}{|\nabla S|} \right) + V_1 \right]$$

$$V_1 = -p + \frac{\epsilon_m}{2} |\nabla \Phi|^2 - \Phi \rho_m - \frac{\epsilon_s}{2} |\nabla \Phi|^2 - k_B T \sum_{\alpha} \rho_{\alpha 0} \left(e^{-\frac{q_\alpha \Phi + U_\alpha - \mu_{\alpha 0}}{k_B T}} - 1 \right)$$

Graph modeling of biomolecules

(Opron, Xia, Wei, JCP, 2014)

Further development: multiscale FRI, anisotropic FRI...

Protein-Nucleic Acid Flexibility

Multiscale Virtual particle based elastic network model of Vault (on-going)

Collaborator Sierin Lim SCBE, NTU

Collaborator Takafumi Ueno Tokyo Tech

Collaborator **Jiajie Peng CS, NWPU**

Hi-C Data analysis (on-going)

Chromosome Conformation Capture

(Xia, Plos one, 2018)

A multiscale spectral graph model for Hi-C data analysis

Crosslink DNA

AAGCTT

TTCGA

HindIII

(Peng, Yang, Xia, Bioinformatics, revised 2019)

Data analysis--Machine learning and data mining:

Statistic learning; Machine learning; Deep learning; Nonlinear dimensionality reduction Data mining...

> *Combine together to provide features for data analysis*

Geometric representation and modeling; Topological representation and modeling; Combinatorial representation and modeling...

Biophysics models:

Physics and

Fokker-Planck equation, Brownian dynamics, Langevin dynamics, molecular dynamics, master equation, Poisson-Nernst-Planck equations, Kohn-Sham equation, Navier-Stokes equation, Laplace-Beltrami equation, mean curvature flow, Poisson-Boltzmann equation, Maxwell's equations, anisotropic diffusion equation...

Part 1: Biomolecular topology

About 20 orders in time scales

Evolutionary biology

Reaction diffusion Stochastic models Kinetic models Delayed ODEs Discrete models Homology models Machine learning

Developmental biology Physiology Biomechanics

Continuum models Mechanical models Navier-Stokes (Non-) linear elasticity Maxwell's equation Thermal models Rheological models Hodgkin-Huxley model Lattice models Neural networks Geometric models Topological models

Systems biology Cellular mechanics Chemical kinetics (ODEs) Gene regulatory network Protein network Neural networks Hodgkin-Huxley model

FitzHugh-Nagumo model Mechanical models Reaction diffusion Phase field models Stochastic models Statistical models Monte Carlo Combinatory Topological models Machine learning

Cellular biology

Molecular biology Biochemistry Biophysics

Molecular dynamics Thermal dynamics Brownian dynamics Lagevin dynamics Quantum models QM/MM Electrostatics Implicit models Boltzmann equation Vlasov-Boltzmann Fokker-Planck Monte Carlo Master equation Homology models Knot theory

A Brief Summary of Modern Biological Science

<mark>1960</mark> 200	2019
Organismal biology (i.e., nonliving organisms, living organisms, developmental biology, morphology, anatomy, physiology, and medicine) Ecology	Molecular organismal biology, organomics, connectomics, foodomics, physiomics, pharmacogenomics, Molecular ecology
Evolution (i.e., life, and evolutionary biology)	Molecular evolution
Molecular and cellular biology (i.e., cell biology, biochemistry, molecular biology, and genetics)	Omics (e.g., genomics, proteomics, metabolomics, metagenomics, lipidomics, glycomics, transcriptomics, epigenomics,)

Macroscopic

Mesoscopic

Microscopic

A Brief History of Biological Science

Francis Crick (1916 - 2004) and James Watson (1928 –) Nobel Prize in Physiology or Medicine in 1962 "for discoveries concerning the molecular structure of

nucleic acids and its significance for information transfer in living material", i.e., the Central Dogma of molecular biology:

Biomolecular Topology

dynamics

Molecular Protein-protein Interactions

DNA knots 8 8 8

8 3

œ

R

Ø 0

B

ዓ

Biomolecular regulatory network

Protein structure network

Biological data

Same biomolecule?

Protein Structure

Polypeptides formed from sequences of 20 amino acids.

Primary structure Secondary structure Tertiary structure Quaternary structure

20 common Amino Acids

Peptide chain

Protein Bond Types

Disulfide bond ~60kcal/mol Salt (Ionic) bond ~20kcal/mol Hydrogen bond ~10kcal/mol Hydrophobic interaction and van der Waals ~1kcal/mol

Covalent bond: C-C ~100kcal/mol

Protein Structures

(b) Secondary structure

(a) Primary structure

(d) Quaternary structure-

Nuclei Acid Structure

Nitrogenous base (Adenine, Guanine, Cytosine, Thymine (in DNA), Uracil (in RNA)) 5-carbon sugar called deoxyribose (found in DNA) and ribose (found in RNA). One or more phosphate groups.

Primary structure Secondary structure Tertiary structure Quaternary structure

Image credit: Thomas Shafee

Nuclei acid structure

Copyright © 2003 Pearson Education, Inc., publishing as Benjamin Cummings.

Experimental tools and data

- Experimental tools
 - X-Ray Crystallography
 - NMR Spectroscopy
 - Cryogenic electron microscopy
- Repositories
 - Protein Data Bank
 - Cryo-Electron Microscopy Databank
- Classification Data Bank
 - CATH (<u>C</u>lass, <u>A</u>rchitecture, <u>T</u>opology, <u>H</u>omologous superfamily)
 - SCOP (<u>Structural Classification Of Proteins</u>)
 - FSSP (Fold classification based on Structure-Structure alignment of Proteins)

<u>Structure of a PDB file</u>											
index	re name	sna	me	chai	'n	resid	×_	× <u>7</u>		segi	name
ATOM	22	N	ALA	в	3	-4.073	-7.587	-2.708	1.00	0.00	ВН
ATOM	23	HN	ALA	в	3	-3.813	-6.675	-3.125	1.00	0.00	BH
ATOM	24	CA	ALA	в	3	-4.615	-7.557	-1.309	1.00	0.00	BH
ATOM	25	HA	ALA	в	3	-4.323	-8.453	-0.704	1.00	0.00	BH
ATOM	26	CB	ALA	В	3	-4.137	-6.277	-0.676	1.00	0.00	BH
ATOM	27	HB1	ALA	В	3	-3.128	-5.950	-0.907	1.00	0.00	BH
ATOM	28	HB2	ALA	В	3	-4.724	-5.439	-1.015	1.00	0.00	BH
ATOM	29	HB3	ALA	В	3	-4.360	-6.338	0.393	1.00	0.00	BH
ATOM	30	С	ALA	В	3	-6.187	-7.538	-1.357	1.00	0.00	BH
ATOM	31	0	ALA	В	3	-6.854	-6.553	-1.264	1.00	0.00	BH
ATOM	32	Ν	ALA	В	4	-6.697	-8.715	-1.643	1.00	0.00	BH
ATOM	33	HN	ALA	В	4	-6.023	-9.463	-1.751	1.00	0.00	BH
ATOM	34	CA	ALA	В	4	-8.105	-9.096	-1.934	1.00	0.00	BH
ATOM	35	HA	ALA	В	4	-8.287	-8.878	-3.003	1.00	0.00	BH
ATOM	36	CB	ALA	В	4	-8.214	-10.604	-1.704	1.00	0.00	BH
ATOM	37	HB1	ALA	В	4	-7.493	-11.205	-2.379	1.00	0.00	BH
ATOM	38	HB2	ALA	В	4	-8.016	-10.861	-0.665	1.00	0.00	BH
ATOM	39	HB3	ALA	В	4	-9.245	-10.914	-1.986	1.00	0.00	BH
ATOM	40	С	ALA	В	4	-9.226	-8.438	-1.091	1.00	0.00	BH
ATOM	41	0	ALA	В	4	-10.207	-7.958	-1.667	1.00	0.00	BH
00000	0000000	0000	0000	00000	00	000000000000000000000000000000000000000	00000000	000000000	000000	000000	0000000
	10		20			30	40	50		60	70

Biophysics

 Biophysics is an interdisciplinary science that applies approaches and methods traditionally used in physics to study biological phenomena.
 Biophysics covers all scales of biological organization, from molecular to organismic and populations

3) Molecular biophysics applies physical approach to model biomolecular systems and understand their interactions and structure-function relationship.
4) Unlike data-driven bioinformatics and knowledgebased systems biology, biophysics is mechanistic.

Hierarchy of Methods

Molecular Mechanics (MM) Using classical particle assumption. Newton's second law: $m_i \frac{d^2}{dt} \mathbf{r}_i = \mathbf{F} = -\nabla U(\mathbf{r}_1(t), \mathbf{r}_2(t), \dots, \mathbf{r}_n(t))$ Approximation: $U = \sum K_d (d - d_0)^2 + \sum K_\theta (\theta - \theta_0)^2$ bonds angle Foundations of Biophysics + $\sum_{\chi} K_{\chi} (1 + \cos(n\chi - \delta))$ Continuum Mechanics (CM) dihedrals Hydrodynamics (HD) $+\sum_{\text{nonbond}} \left\{ \epsilon_{ij} \left[\left(\frac{R_{ij}^{\min}}{r_{ij}} \right)^{12} - \left(\frac{R_{ij}^{\min}}{r_{ij}} \right)^{6} \right] + \frac{q_{i}q_{j}}{\varepsilon r_{ij}} \right\} \quad \text{for } i \in \mathbb{Z}$ Electrodynamics (ED) Reliability Thermodynamics (TD) Molecular Mechanics (MM) Langevin equation: $m\ddot{r} = -\nabla V(r) - \gamma \dot{r} + \sqrt{2\gamma k_{\beta}T}R(t)$, Kinetic Theory (KT) where, $\langle R(t) \rangle = 0$, $\langle R(t)R(t') \rangle = \delta(t - t')$ Statistical Mechanics (SM) Explicit solvent/Implicit solvent/Coarse Grained Quantum Mechanics (QM) MM Software: AMBER/CHARMM/NAMD/TINKER/GROMOS Research issues: high-order force fields, coarse grained methods, implicit MD, etc.

Bioinformatics

- 1) Sequence analysis (DNA sequencing, sequence assembly, genome annotation, comparative genomics, pan genomics, computational evolution, genetics, cancer mutation, etc.).
- 2) Gene and protein expression (Gene expression analysis, protein expression analysis, gene regulation, genotype-phenotype map, etc.).
- 3) Systems biology (Pan networks, integrated systems analysis).
- 4) Cellular organization (Microscopy and image analysis, protein localization, membrane mechanics, chromatin analysis, etc.).
- 5) Structural bioinformatics (Biomolecular structure and interaction, structure-function relationship, protein folding, protein design, etc..
- 6) Database and software.
- 7) Unlike biophysics, bioinformatics is data-driven.

Protein Structure Prediction

SVYDAAAQLTADVKKDLRDSW KVIGSDKKGNGVALMTTLFAD NQETIGYFKRLGNVSQGMAND KLRGHSITLMYALQNFIDQLD NPDSLDLVCS

- 1) Understand protein structure-function relationship
- 2) Design protein with desired function
- 3) Drug development
- 4) Methods (knowledge-based):

Template-based modeling (homology modeling) is used when there is one or more similar known structures in PDB.

Ab initio structure prediction (e.g., Rosetta) is used when one cannot find any similar structure.

Deep learning (e.g., AlphaFold, CNN, RNN)

5) Evaluation:

Critical Assessment of protein Structure Prediction (CASP) Knowledge-based methods win; QM/MM do not work well. Protein Sequence

ALPHAFOLD SQETRKKCTEMKKKFKNCEVRCDESNHCVEVRCSDTKYTLC https://deepmind.com/blog/alphafold/ Google DeepMind Neural Network Databases T0954 / 6CVZ T0965 / 6D2V T0955 / 5W9F Distance Angle Predictions Predictions Score Gradient Descent T0954 / 6CVZ T0965 / 6D2V T0955 / 5W9F Structures: Ground truth (gr Predicted (blu

New Trends in Biological Science

- 1) New bioscience is based on molecules and/or omics.
- 2) Integrative biology (from molecules, organism to environment).
- 3) Integration of biophysics, systems biology, and bioinformatics.
- 4) Integration of mathematics, data science, theoretical biology and experimental biology.
- 5) Mathematical molecular bioscience and biophysics.
- 6) Quantitative systems pharmacology (from systems biology, biomechanics, systems physiology to systems pharmacology).
- 7) Personalized medicine (precision medicine).

Mathematical Molecular Bioscience and Biophysics

Mathematics

Computer Science

Mathematical molecular bioscience and biophysics **Biophysics**

Biology Biochemistry

Mathematical Molecular Bioscience and Biophysics

- 1) It concerns the mathematical foundation of biological science.
- 2) It is based on molecular bioscience and omics in contrast to macroscopic biosciences.
- 3) It overlaps with molecular biophysics, systems biology and bioinformatics but is distinguished from any mathematical biology that is macroscopic and phenomenological.
- 4) It exploits existing mathematics for describing biological observations and dynamics.
- 5) It makes use of computational algorithms and methods from mathematics, machine learning and statistics.
- 6) It has applications to a wide range of biological problems, including protein design, drug discovery, precision medicine, to mention only a few.
- 7) It generates new mathematics from biological challenges.

Mathematics Commonly Used in Molecular Bioscience

D.W. Sumners, Isabel .K. Darcy , Mariel Vazquez, Dorothy Buck, Tamar Schlick, Erica Flapan, Christian Reidys, Yusu Wang, Peter Rogen, Jack Quine,

Christine Heitsch, David Murrugarra, Reidun Twarock Natasha Jonoska, R Brijder, HJ Hoogeboom,

Julie Mitchell

M Karplus, M Levitt, A Warshel, B Honig, E Alxov, A Onufriev,... B.S. Eisenberg, Chun Liu, Weishi Liu, Yun Kyong Hyon, TC Lin, JL Liu, TL Horng, YN Young, HX Huang, Lei Zhang, Tom Chou J.A. McCammon, Michael Holst, Jingfang Huang, Benzhuo Lu, Nathan Baker, Bo Li, LT Cheng, MX Chen, Shenggao Zhou, Keith Promislow, Shibin Dai, Nir Gavish, Robert Krasny, DX Xie, LR Scott, Wei Cai, ZL Xu, Amit Singer, D. Kozakov, R Rizzo, D. Green, R Ryham, LJ Cowen, ...

Part 2-1: Topological modeling of biomolecules
Graph theory for molecular bioscience

- Structural stability and flexibility analysis
- Surface modeling
- Visualization
- Biomolecular domain analysis and hinge detection
- Entropy estimation
- Modeling of a wide range of biomolecular interactions
- Prediction of a wide variety of chemical and biological properties, including binding affinity, solubility, participation coefficient, mutation impact, reaction rates, toxicity, ordered-disordered transition, ...

Graph Theory

Hypergraph: A hypergraph (H) is a generalization of a graph in which an edge can join any number of vertices.

H = (X, E), where X is a set of nodes or vertices and E is a set of hyperedges, which are a subset of the power set such that . $E \subseteq \mathscr{O}(S) \setminus \{\emptyset\}.$

A power set $\wp(S)$ of set *S* is the set of all subsets of *S*, including the empty set $\{\emptyset\}$ and *S* itself.

Algebraic graph Theory Graph representations: Degree matrix (D), Laplacian matrix (L) and Adjacency matrix (A). Example: A simple (undirected) graph: $G = (V, E), V = \{v_1, v_2, v_3, v_4\},\$ $E \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_2, v_4\}\}$

$$D = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$L = \begin{bmatrix} 2 & -1 & -1 & 0 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 2 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}$$

- 1

 \mathcal{V}_2

 $\mathcal{V}_{\mathcal{I}}$

12.

()

11

$$L = D - A$$

$$\sum_{i} d_{i} = 2 + 3 + 2 + 1 = 2|E| = 8$$

Degree of node *i* Total # of edges

Algebraic Graph Theory

Laplacian matrix (L_G) is symmetric and has real valued entries. So it is self-adjoint and thus has real, non-negative eigenvalues: V_3

- $0 \leq \lambda_1^L \leq \lambda_2^L \cdots 0 \leq \lambda_{\text{Max}}^L$
- $\lambda_1^L = 0$ for L_G
- $\lambda_2^L > 0$ if *G* is connected
- Multiplicity of 0 as an eigenvalue of L_G is equal to the number of connected components of *G* (the topology).

Let L_G be a symmetric matrix with eigenvalues $\lambda_1^L \leq \lambda_2^L \cdots 0 \leq \lambda_{Max}^L$. Then

• $\lambda_1^L = \min_{\substack{\mathbf{x}\neq 0}} \frac{\mathbf{x}^T L_G \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$ • $\lambda_2^L = \min_{\substack{\mathbf{x}\neq 0, \mathbf{x}\perp \mathbf{x}_1^L}} \frac{\mathbf{x}^T L_G \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$ • $\lambda_{\text{Max}}^L = \max_{\substack{\mathbf{x}\neq 0}} \frac{\mathbf{x}^T L_G \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$

$$A = \begin{bmatrix} 2 & -1 & -1 & 0 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 2 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}$$

 \mathcal{V}_4

 \mathcal{V}_{I}

 \mathcal{V}_2

Graph Theory

Graph partition: Partition a graph G = (V, E) into smaller components with certain properties.

Fiedler eigenvalue and eigenvector: the second smallest eigenvalue (λ_2^L) provides a lower bound on ratio-cut partition: $c \ge \frac{\lambda_2^L}{|E|}$. The associated eigenvector, Fiedler vector bisects the graph into two sections based on the sign of the eigenvector (i.e., spectral bisection based on algebraic connectivity).

Example I:

$$\operatorname{Vec} = \begin{bmatrix} -\frac{1}{\sqrt{2}} & 0 & 0 & -\frac{1}{\sqrt{2}} & 0 \\ -\frac{1}{\sqrt{2}} & 0 & 0 & \frac{1}{\sqrt{2}} & 0 \\ 0 & -\frac{1}{\sqrt{3}} & 0 & 0 & -\frac{2}{\sqrt{6}} \\ 0 & -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{6}} \\ 0 & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{6}} \\ \end{bmatrix} L = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & -1 & -1 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 0 & 1 \end{bmatrix}$$

$$\operatorname{Eig} = \begin{bmatrix} 0 & 0, & 1, & 2, & 3 \end{bmatrix}$$

Two disconnected components (harmonic part due to the topology)

$$Vec = \begin{bmatrix} 0.45 & 0.34 & 0 & -0.70 & 0.44 \\ 0.45 & 0.70 & 0 & 0.54 & -0.14 \\ 0.45 & -0.20 & 0 & -0.32 & -0.81 \\ 0.45 & -0.42 & -0.70 & 0.24 & 0.26 \\ 0.45 & -0.42 & 0.70 & 0.24 & 0.26 \end{bmatrix}$$

Eig = [0, 0.52, 1.00, 2.31, 4.17]

Graph modularity for domain classification

Graph modularity (Q**):** The fraction of the edges that fall within the given groups minus the expected fraction if edges were distributed at random for a given connectivity:

 $Q = \frac{1}{2|E|} \sum_{ii} \left(A_{ij} - \frac{d_i d_j}{2|E|} \right) \frac{s_i s_j + 1}{2}$

where *s_i* is a membership variable,

$$s_i = \begin{cases} 1 & v_i \in V_1 \\ -1 & v_i \in V_2 \end{cases}$$

Expected # of edges between nodes *i* and *j*

Properties:

•
$$-1 \le Q \le 1$$

- $Q = 0 \Rightarrow$ all nodes in one group
- Q > 0 more edges in V_1
- Q < 0 more edges in V_2
- Selecting s_i to maximize Q. When Q is optimized, the modularity matrix $\left(B_{ij} = A_{ij} \frac{d_i d_j}{2|E|}\right)$ no positive eigenvalue.

Gaussian Network Model (GNM)—Laplacian model

 $B_{j}^{\text{GNM}} = \alpha (L^{-1})_{jj},$ $L_{ij} = \begin{cases} -1, \ i \neq j, \ r_{ij} \leq r_{c} \\ 0, \ i \neq j, \ r_{ij} > r_{c} \\ -\sum_{j,j\neq i}^{N} L_{ij}, \ i = j \end{cases}$ $(L^{-1})_{jj} = \sum_{k=2}^{N} \frac{1}{\lambda_{k}} [u_{k}u_{k}^{T}]_{jj}$ Moore-Penrose pseudoinverse

where α is fitting parameter, r_c a cutoff distance (7 Å is often used for C_{α} networks), λ_k the kth eigenvalue and u_k the kth eigenvector.

Multiscale GNM based domain analysis

Protein domain decomposition with Type-1 mGNM. The first non-zero eigenvector (Fiedler vector) is used to decompose the protein into two domains. (a) Protein 1ATN (chain A); (b) protein 3GRS.

Anisotropic network model

Potential function:

$$\begin{array}{c}
r_{ij}^{d} = |\mathbf{r}_{ij}^{d}| \\
r_{ij} = |\mathbf{r}_{ij}| \\
V^{ANM} = \gamma \sum_{i,j}^{N} (r_{ij}^{d} - r_{ij})^{2} f(r_{ij}) = \frac{\gamma}{2} \Delta \mathbf{R}^{T} H \Delta \mathbf{R}. \\
H_{ij} = -\frac{1}{r_{ij}^{2}} \begin{bmatrix}
(x_{j} - x_{i})(x_{j} - x_{i}) & (x_{j} - x_{i})(y_{j} - y_{i}) & (x_{j} - x_{i})(z_{j} - z_{i}) \\
(y_{j} - y_{i})(x_{j} - x_{i}) & (y_{j} - y_{i})(y_{j} - y_{i}) & (z_{j} - z_{i})(z_{j} - z_{i}) \\
(z_{j} - z_{i})(x_{j} - x_{i}) & (z_{j} - z_{i})(y_{j} - y_{i}) & (z_{j} - z_{i})(z_{j} - z_{i}) \\
H_{ii} = -\sum_{i \neq j} H_{ij}, \quad \forall i = 1, 2, \cdots, N. \\
\text{Moore-Penrose pseudoinverse:} eigenvector \\
(H^{-1})_{ii} = \sum_{k=7}^{3N} \lambda_{k}^{-1} [\mathbf{v}_{k} \mathbf{v}_{k}^{T}]_{ii} \\
eigenvalue
\end{array}$$

$$B_i^{\text{ANM}} = \frac{8\pi^2}{3} \sum_{j=3i-2} \langle \Delta \mathbf{R}_j \cdot \Delta \mathbf{R}_j \rangle, \ \forall i = 1, 2, \cdots, N.$$
$$\langle \Delta \mathbf{R}_i \cdot \Delta \mathbf{R}_j \rangle = \frac{3k_B T}{\gamma} (H^{-1})_{ij}, \ \forall i, j = 1, 2, \cdots, 3N.$$

The motions of 1GRU (chain A). The 7th, 8th, and 9th nANM modes are demonstrated in (a)-(c), respectively

(a)

The motions of 1URP (chain A). The 7th, 8th, and 9th mANM modes are demonstrated in (a)-(c), respectively.

(Xia, Opron and Wei, JCP, 2016)

Geometry to topology mapping

Connectivity matrix: $A_{ij} = \begin{cases} \phi(||r_i - r_j||; \eta), & i \neq j; \\ -\sum_{i \neq j} A_{ij}, & i = j. \end{cases}$ Connectivity matrix:

Kernel function:

$$\phi(||r_i - r_j||; \eta) = 1, \ as \ ||r_i - r_j|| \to 0$$

$$\phi(||r_i - r_j||; \eta) = 0, \ as \ ||r_i - r_j|| \to \infty$$

Generalized exponential : $\phi(\parallel r_i - r_j \parallel; \eta) = e^{-(\parallel r_i - r_j \parallel/\eta)^{\kappa}}$

Generalized Lorentz: $\phi(||r_i - r_j||; \eta) = \frac{1}{1 + (||r_i - r_j|| / \eta)^{\nu}}$

Flexibility rigidity index (FRI)

Parameter testing

Parameter testing for exponential (left chart) and Lorentz (right chart) using the dataset with 365 proteins.

Performance of our FRI

Accuracy: (10% improvement)...

PDB set	pfFRI	GNM	NMA
Small	0.594	0.541	0.480
Medium	0.605	0.550	0.482
Large	0.591	0.529	0.494
Superset	0.626	0.565	NA

``.. atomic mean-square displacements is essentially determined by spatial variations in local packing density.."

Bertil Halle, PNAS, Vol. 99, No.3, 1274-1279, 2002

Exponential parameters	Avg. CC	Lorentz parameters	Avg. CC
κ =0.5, η =0.5	0.615 (8.8%)	$v=2.5, \eta=2.0$	0.622 (10.1%)
κ =1.0, η =3.0	0.623 (10.3%)	$v=3.0, \eta=3.0$	0.626 (10.8%)
κ =1.5, η =6.0	0.619 (9.6%)	$v=3.5, \eta=4.0$	0.623 (10.3%)

Time: fFRI O(N)

HIV Virus capsid (313 236 residues) in less than 30 seconds

Extremely large biomolecules

Vault particle

HIV virus capsid

Poliovirus capsid

microtubule

Quantized elastic deformational model (QEDM)

Voronoi Tessellation (Vector quantization)

W. Wriggers, P. Chacon, et al, Neurocomputing, Vol 56, 365-379, 2004

Deformational motions are determined by GNM and ANM

Multiscale virtual particle model

Virtual particle generation:

Various types of meshes: Cartesian grid; Tetrahedral mesh; Hexahedron; Voronoi tessellation, etc.

Connection between particles:

$$\gamma(\mathbf{r}_I, \mathbf{r}_J, \Omega_I, \Omega_J, \mu^s(\mathbf{r}), \eta^{\mathrm{MVP}}) = \gamma_1(\Omega_I, \Omega_J, \mu^s(\mathbf{r})) \cdot \gamma_2(\mathbf{r}_I, \mathbf{r}_J, \eta^{\mathrm{MVP}})$$

$\begin{array}{l} \textbf{Density}\\ \textbf{contribution:}\\ \gamma_1(\Omega_I, \Omega_J, \mu^s(\mathbf{r})) = \left(1 + a \int_{\Omega_I} \mu^s(\mathbf{r}) d\mathbf{r}\right) \left(1 + a \int_{\Omega_J} \mu^s(\mathbf{r}) d\mathbf{r}\right) \end{array}$

Distance contribution: $\gamma_2(\mathbf{r}_I, \mathbf{r}_J, \eta^{\text{MVP}}) = e^{-(\|\mathbf{r}_I - \mathbf{r}_J\|/\eta^{\text{MVP}})^{\kappa}}, \quad \kappa > 0.$

Multiscale virtual particle based Gaussian network model (MVP-GNM)

Potential function:

$$V^{\text{MVP-GNM}} = \frac{1}{2} \Delta \mathbf{r}^T L^{\text{MVP-GNM}} \Delta \mathbf{r}$$
$$L_{ij}^{\text{MVP-GNM}} = \begin{cases} -\gamma(\mathbf{r}_I, \mathbf{r}_J, \Omega_I, \Omega_J, \mu^s(r)) & i \neq j \\ -\sum_{i \neq j}^N L_{ij} & i = j \end{cases}.$$

Moore-Penrose pseudoinverse:

Predicted b-factor:

$$\sum_{k=2}^{N} \lambda_k^{-1} \left[\mathbf{v}_k \mathbf{v}_k^T \right]_{ii}$$

eigenvalue

$$\frac{8\pi^2}{3} < \Delta \mathbf{r}_i \cdot \Delta \mathbf{r}_i >, \ \forall i = 1, 2, \cdots, N$$
$$< \Delta \mathbf{r}_i \cdot \Delta \mathbf{r}_j >= \frac{3k_B T}{\gamma} (L^{-1})_{ij}, \ \forall i = 1, 2, \cdots, N$$

Multiscale representation of biomolecules

Kernel function:

$$\phi(||r-r_{j}||;\eta) = 1, as ||r-r_{j}|| \rightarrow 0$$

$$\phi(||r-r_{j}||;\eta) = 0, as ||r-r_{j}|| \rightarrow \infty$$
We use kernel
$$\phi(||r-r_{j}||;\eta) = e^{-(||r-r_{j}||/\eta)^{2}}$$

$$\phi(||r-r_{j}||;\eta) = e^{-(||r-r_{j}||/\eta)^{2}}$$
Rigidity function:
$$\mu(r) = \sum_{j}^{N} w_{j} \phi(||r-r_{j}||;\eta)$$

Validation of MVP-GNM

Cartesian grid with grid spacing 4Å!!

	GNM	MVP- GNM (5Å)	MVP- GNM (10Å)	MVP- GNM (15Å)
1AQB	0.822	0.666	0.657	0.699
2CCY	0.739	0.623	0.507	0.439
2ABH	0.647	0.550	0.731	0.775

Multiscale virtual particle based anisotropic network model (MVP-ANM)

Potential function:

$$V^{\text{MVP-ANM}} = \frac{1}{2} \Delta \mathbf{R}^T H^{\text{MVP-ANM}} \Delta \mathbf{R}$$

$$H_{IJ}^{\text{MVP-ANM}} = -\frac{\gamma_{IJ}}{r_{ij}^2} \begin{bmatrix} (x_J - x_I)(x_J - x_I) & (x_J - x_I)(y_J - y_I) & (x_J - x_I)(z_J - z_I) \\ (y_J - y_I)(x_J - x_I) & (y_J - y_I)(y_J - y_I) & (y_J - y_I)(z_J - z_I) \\ (z_J - z_I)(x_J - x_I) & (z_J - z_I)(y_J - y_I) & (z_J - z_I)(z_J - z_I) \end{bmatrix} I \neq J.$$

$$H_{II}^{\text{MVP-ANM}} = -\sum_{I \neq J} H_{IJ}^{\text{MVP-ANM}}, \forall i = 1, 2, \cdots, N.$$

$$Moore-Penrose \ pseudoinverse: eigenvector$$

$$Moore-Penrose \ pseudoinverse: eigenvalue$$

Predicted b-factor:

$$\frac{8\pi^2}{3}\sum_{j=3i-2}^{3i} < \Delta \mathbf{R}_j \cdot \Delta \mathbf{R}_j >, \ \forall i = 1, 2, \cdots, N.$$

$$\langle \Delta \mathbf{R}_i \cdot \Delta \mathbf{R}_j \rangle = \frac{3k_BT}{\gamma} (H^{-1})_{ij}, \ \forall i, j = 1, 2, \cdots, 3N.$$

Validation of MVP-ANM

Protein ID: 2CCY

Protein ID: 2ABH

We use kernel $\phi(||r-r_j||;\eta) = e^{-(||r-r_j||/\eta)^2}$

Cartesian grid with grid spacing 5Å

	GNM	MVP- ANM (5Å)	MVP- ANM (10Å)	MVP- ANM (15Å)
1AQB	0.725	0.696	0.593	0.646
2CCY	0.664	0.627	0.450	0.435
2ABH	0.548	0.442	0.743	0.760

Normal modes for protein 2ABH

Normal modes for protein 2CCY

Resolution parameter is 15Å

	MVP- ANM (X)	MVP- ANM (Y)	MVP- ANM (Z)
Mode 7	0.896	0.834	0.910
Mode 8	0.461	0.799	0.746
Mode 9	0.827	0.681	0.759

The dynamics of Vault Shell

Multiscale virtual particle based elastic network model of Vault

Part 2-2: Topological modeling of biomolecules

Euler Characteristic

Carl Friedrich Gauss (German Mathematician, 1777 – 1855)

Gauss-Bonnet Theorem

Gaussian curvature

 $\int_M K dA = 2\pi \chi(M)$

Connection between differential geometry and topology

"Spherical cow", Wikipedia

Topological data analysis

Point cloud data

 β_k

Topological space

Vietoris-Rips complex

Simplicial complex

Chain group: $C_k(K, \mathbb{Z}_2)$

= Rank (H_k)

The topological information can be calculated!!

Opportunities, challenges and promises

Opportunities from topological methods:

New approach for big data characterization and classification.
 Dramatic reduction of dimensionality and data size.
 Applicable to a variety of fields.

Challenges with topological methods:

Geometric methods are inundated with structural details.
 Topology incurs too much reduction of original information.
 Topology is hardly used for quantitative prediction.

Promises from persistent homology: ✓ Embeds geometric information in topological invariants. ✓ Bridges the gap between geometry and topology.

```
Researchers:
Frosini (1991),
Robins (2000),
Edelsbrunner, Letscher and Zomorodian (2002),
Kaczynski, Mischaikow and Mrozek (2004),
Zomorodian and Carlsson (2005),
Ghrist (2008),
Dey and Wang(2009),
```

Softwares: Javaplex, Perseus, Dipha, Dionysus,

.....

Fullerene isomers

(Xia, Feng, Tong & Wei, JCC, 2015)
Fullerene isomers

http://www.nanotube.msu.edu/fullerene/fullerene-isomers.html

C_n Fullerenes

¢\$	Ô	$\langle O \rangle$				8		\$	
с ₂₀	C ₂₄	С ₂₆	C ₂₈	C ₃₀	C ₃₂	C ₃₄	С ₃₆	C ₃₈	C ₄₀
\$\$P				0					
C ₄₂	C ₄₄	℃ 46	C ₄₈	C ₅₀	C ₅₂	C ₆₀	С ₇₀	C ₇₂	C ₇₄
	$\langle \mathfrak{S} \rangle$								
C ₇₆	C ₇₈	C ₈₀	C ₈₂	C ₈₄	C ₈₆	C ₉₀	C ₉₂	C ₉₄	C ₉₆
	\otimes								
C ₉₈	C ₁₀₀	C ₁₈₀	C ₂₄₀	C ₂₆₀	C ₃₂₀	C ₅₀₀	C ₅₄₀	C ₇₂₀	

Click on a fullerene for a list of isomers, their structure and properties.

The fullerene geometries are based on structures in the Fullerene Library that has been created by M. Yoshida. The geometries have been reoptimized using a fast Dreiding-like forcefield that is built into the free Discovery Studio Visualizer. The numbering scheme of fullerene isomers seems to agree with that used in the monograph "An atlas of fullerenes" by P. W. Fowler and D. E. Manolopoulos.

The curvature energy is an estimate of the formation energy of the particular isomer with respect to graphite. This estimate, provided by Jie Guan, is based on local curvature, as defined in the publication by Jie Guan, Zhongqi Jin, Zhen Zhu, Chern Chuang, Bih-Yaw Jin, and David Tománek, entitled *Local Curvature and Stability of Two-Dimensional Systems*, Phys. Rev. B **90**, 245403 (2014).

The web resource at http://www.nanotube.msu.edu/fullerene/fullerene-isomers.html has been provided by David Tomanek and Nick Frederick at the Michigan State University Computational Nanotechnology Lab. It is linked to the Supplementary Information provided with the monograph Guide through the Nanocarbon Jungle: Buckyballs, Nanotubes, Graphene, and Beyond.

(Nano) Material

Hierarchical structures of amorphous solids characterized by persistent homology

Yasuaki Hiraoka^{a,1,2}, Takenobu Nakamura^{a,1}, Akihiko Hirata^a, Emerson G. Escolar^a, Kaname Matsue^b, and Yasumasa Nishiura^a

Topological fingerprints of an alpha helix

Topological fingerprints of beta barrel

Protein:2GR8

 β_2

DNA: A-T pair

Flexibility-rigidity analysis

Kernel function:

PHA for multiresolution representations

(Xia & Wei, JCB, 2015)

Multiresolution of the virus capsid

Betti-0

Betti-2

Topic--PHA for ill-posed inverse problems

PHA for ill-posed inverse problems

Figure 1. Manual fitting of predicted models of beta subunit into phosphorylase kinase using MVP-Fit. Left panel shows the result with rigid-body fitting while the right shows that with further local flexible fitting.

Molecular Dynamics Flexible Fitting

Main | Method | Software | Docu

Biophysical Journal

Flexible Fitting of Atomic Models into Cryo-EM Density Maps Guided by Helix Correspondences

Hang Dou,^{1,*} Derek W. Burrows,¹ Matthew L. Baker,² and Tao Ju¹

¹Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri and ²Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas

MDFF for cryo-EM

The molecular dynamics flexible fitting (MDFF) method can be used to fl the density map into a molecular dynamics (MD) simulation of the atomic

xMDFF for X-ray Crystallography

xMDFF is an MDFF-based approach for determining structures from lowiteratively updating electron density map. It addresses significant large-so

Use the menu above to navigate the MDFF website. For examples of MC

Atoms in Molecules

Richard F. W. Bader McMaster University, Hamilton, Ontario, Canada

Table 1: The classification of critical points into four basic types, including nucleic critical point (NCP), bond critical point (BCP), ring critical point (RCP) and cage critical point (CCP), as demonstrated in Fig. 17.

	Rank	Signature	Poincaré index	Simplex	Property
NCP	3	-3	1	0-simplex	local maxima
BCP	3	-1	-1	1-simplex	saddle
RCP	3	1	1	2-simplex	saddle
CCP	3	3	-1	3-simplex	local minima

Atoms in molecule (On-going)

Atoms in Molecules

Richard F. W. Bader McMaster University, Hamilton, Ontario, Canada

(Xia & Wei, arXiv, 2017)

Figure 20: Eigenvalue maps obtained from different isovalues (or level-set values) for a cubic structure. (a) The isosurfaces for the first eigenvalue. The isovalues from (a_1) to (a_4) are -3.0, -1.5, 0.1 and 0.9. (b) The isosurfaces for the second eigenvalue. The isovalues from (b_1) to (b_4) are -1.0, 0.5, 1.0 and 1.5. (c) The isosurfaces for the third eigenvalue. The isovalues from (c_1) to (c_4) are -1.0, 1.5, 2.0 and 2.5.

Characterizing Molecular Interactions in Chemical Systems

David Günther, Roberto A. Boto, Julia Contreras-Garcia, Jean-Philip Piquemal, Julien Tierny

A Topological Data Analysis perspective on noncovalent interactions in relativistic calculations

Protein Electrostatic Potential

Persistent homology analysis for electrostatic potential

Topic-- Weighted persistent homology

- > Weighted alpha complex;
- > Weighted Vietoris-Rips;
- k-distance based models;
- > Rigidity function based models;
- > Weighted clique rank homology;
- > Physics-aware models;
- > Weighted simplicial homology;

Localized Persistent homology (LPH)

Collaborator Jie Wu Math, NUS

- New filtration
- Weighted boundary map

Interactive Persistent homology (IPH)

(Cang, Mu, Wei, PLOS Comp. Biol., 2018)

WPH for DNA classification

PH VS Interactive PH (GC)

Cambridge University Engineering Department Helix computation Scheme (CEHS)

Hi-C data analysis

Genomic compartment

Topological associated domain(TAD)

Sequence-based multiscale models

Kelin Xia, PLOS ONE, 2018

spatial

Optimize sequence information

Genomic compartment TAD

Genomic compartment analysis

TAD analysis

IMR90, cell chromosome 22, Resolution:100kb

Multiscale Knots

Supercoiling Theory and Model of Chromosomal Structures in Eukaryotic Cells

Hao Zhang, Tianhu Li*

Β.

Mutually bound regions between two chromatids display left-handed

X-ray structure of a tetranucleosome and its implications for the chromatin fibre

Thomas Schalch¹, Sylwia Duda¹, David F. Sargent¹ & Timothy J. Richmond¹

EM measurements define the dimensions of the "30-nm" chromatin fiber: Evidence for a compact, interdigitated structure

Philip J. J. Robinson, Louise Fairall, Van A. T. Huynh*, and Daniela Rhodes[†]

Supercoiling Theory and Model of Chromosomal Structures in Eukaryotic Cells

Hao Zhang, Tianhu Li*

Structure 1

Β.

Structure 2

Structure 3

Acitve insulated neighborhood that contains mainly slack polynucleosomes and loosely packed 30 nm fibers

Crossover points that are associated with non-zero writhe number (-1) of supercoiling-driven polynucleosomes

Inacitve insulated neighborhood that contains mainly loosely packed 30 nm fibers and tightly packed 30 nm fibers

C. Crossover points that are associated

supercoiling-driven polynucleosomes Root region of insulated neighborhood

with non-zero writhe number (-1) of

Silent insulated neighborhood that contains mainly tightly packed 30 nm fibers

Part 3: TDA based machine learning for drug design

Drug design and discovery

- 1) Disease identification (physiology)
- 2) Target hypothesis (biochem./mole. biol.)
- Virtual screening: drug pose, binding affinity, solubility, partition coefficient, toxicity, and side-effects (biophysics/bioinformatics)
- 4) Drug structural optimization in the target binding site (biochemistry/biophysics/synthetic chem.)
- 5) Preclinical in vitro and in vivo test
- 6) Clinical trials
- 7) Optimize drug's efficacy, pharmacokinetics, and pharmacodynamics properties (quantitative systems pharmacology)

Drug Discovery Process (simplified)

Solubility and partition coefficient

Solubility is commonly expressed as a concentration; for example, as *g* of solute per *kg* of solvent. **Partition coefficient** is defined as a particular ratio of the concentrations of a solute between the two solvents

Toxicity

Toxicity: The degree to which a substance (a toxin or poison) can harm humans or animals. **Drug toxicity** occurs when a person has accumulated too much of a drug in his bloodstream, leading to adverse effects on the body.

Bioassays:

LD50 is defined as the lethal dose at which 50% of the population if killed in a given period of time.

LC50 is the lethal concentration required to kill 50% of the population. The LC50 is a measure, *e.g.* in mg/l, of the concentration of the toxin whereas a dose is a more general term.

Protein-ligand (-protein) binding

Protein (P) and ligand (L) form a protein-ligand complex (PL):

 $P + L \rightleftharpoons PL$

The association and dissociation constants are

 $K_a = \frac{[PL]}{[P][L]}, \quad K_d = \frac{[P][L]}{[PL]}.$ Binding affinity: $\Delta G = RT \ln K_d$

Database:

ChEMBL (as 02/28/2019): Targets: 12,091 Compound records: 2,275,906 Distinct compounds: 1,828,820 Activities: 15,207,914 Publications: 69,861 Binding DB, PubChem, PDBbind, K_i Database.

Virtual Screening

Molecular docking

Docking is a process for searching the preferred position and orientation of one molecule to another one to form a stable complex.

Docking a ligand to BACE (Kaifu Gao, Duc Nguyen, and Wei, 2019)

Machine learning based data analysis

Artificial Intelligence

Machine Learning

Deep Learning

The subset of machine learning composed of algorithms that permit software to train itself to perform tasks, like speech and image recognition, by exposing multilayered neural networks to vast amounts of data. A subset of AI that includes abstruse statistical techniques that enable machines to improve at tasks with experience. The category includes deep learning Any technique that enables computers to mimic human intelligence, using logic, if-then rules, decision trees, and machine learning (including deep learning)

How to do deep learning for 3D biomolecular data?

- **Obstacles for deep learning of 3D biomolecules:**
- Geometric dimensionality: \mathbb{R}^{3N} , where **N** ~5000 for a protein.
- Machine learning dimensionality: > 1024³ m, where m is the number of atom types in a protein.
- Molecules have different sizes --- non-scalable.
- Complexity: intermolecular & intramolecular interactions
 Solution:
- Geometric simplification, dimension reduction & scale unification

Sequence data Structure data Omics data Drug related data

Algebraic topology Differential geometry Graph theory Multiscale modeling

Analysis of biomolecular data

Machine learning Deep learning Manifold learning Transfer learning

Molecular descriptor directly determines the performance of the learning models!

Common chemical descriptors for QSAR/QSPR analysis		
Chemical descriptors	Based on	Examples
Theoretical descriptors		
0D	Molecular formula	Molecular weights, atom counts, bond counts
1D	Chemical graph	Fragment counts, functional group counts
2D	Structural topology	Weiner index, Balaban index, Randic index, BCUTS
3D	Structural geometry	WHIM, autocorrelation, 3D-MORSE, GETAWAY
4D	Chemical conformation	Volsurf, GRID, Raptor
Experimental descriptors		
Hydrophobic parameters	Hydrophobicity	Partition coefficents (logP), hydrohobic substituent constant (π)
Electronic parameters	Electronic properties	Acid dissociation constant, Hammett constant
Steric parameters	Steric properties	Taft steric constant, Charton's constant

TDA based machine learning models

(Pun, Xia and Lee, submitted, 2018)

Guowei Wei group's works

SIAM NEWS DECEMBER 2017

Research | December 01, 2017

Persistent Homology Analysis of Biomolecular Data

By Guo-Wei Wei

Professor Mathematics, Electrical & Computer Engineering, Biochemistry & Molecular Biology, Michigan State University , USA

Software packages:

- MIBPB: Online server for electrostatic analysis using the second-order accurate Poisson-Boltzmann solver.
- ESES: Open-source online server for the generation of Eulerian solvent excluded surface.
- PPD: Online server for Protein Pocket Detection.
- FRI: Online server for the flexibility analysis of biomolecules based on flexibility and rigidity index.
- <u>RI-Score</u>: Online server for geometric graph theory or rigidity index (RI) based scoring function for protein ligand binding affinity prediction.
- <u>TML-BP</u>: Online server for topological learning for protein-ligand binding affinity prediction.
- TML-MP: Online server for topology based machine learning for the prediction of protein folding stability change upon mutation.
- <u>TDL-BP</u>: Online server for topological deep learning for protein-ligand binding affinity prediction.
- <u>TDL-MP</u>: Online server for topological deep learning for the prediction of protein folding stability change upon mutation.
- <u>TopP-S</u>: Online server for topological learning of partition coefficient (LogP) and aqueous solubility (LogS).
- <u>TopTox</u>: Online server for computing element-specific topological descriptors (ESTDs) for toxicity endpoint predictions.

Get Involved | September 01, 2016 Mathematical Molecular Bioscience and Biophysics

$--\mathbf{r} - \mathbf{r} - \mathbf{r}$

A Recurring Theme at the SIAM Conference on the Life Sciences

By Guo-Wei Wei

Recent progress in topology based drug design (By Guowei Wei's group)

Element specific persistent homology (ESPH) method

Proteins: (C, N, O, S) Ligands: (C, N, O, S, P, F, Cl, Br,I) Cross protein-ligand ESTFs: one type from protein and the other from the ligand. Totally 36 sets of ESTFs in each topological dimension

Components are generated from element specific persistent homology. Eight channels are constructed from births, deaths and persistences at Betti-0, Betti-1 and Betti-2.

(Cang & Wei, IJNMBE, 2017)

Topology based learning architecture

(Cang & Wei, IJNMBE, 2017)

Topological learning based predictions

Prediction correlations for 2648 mutations on globular proteins

Prediction correlations for 223 mutations on membrane proteins

Binding affinity prediction of PDBBind v2013 core set of 195 complexes

Prediction RMSD of LogP (Star set)

Drug Design Data Resource (D3R) Grand Challenge

D3R Grand Challenge 2 (2016-2017)

(Nguyen et al, JCAMD, 2018)

V/

Given: Farnesoid X receptor (FXR) and 102 ligands

Tasks: Dock 102 ligands to FXR, and predict their poses, binding free energies and energy ranking

Stage 2

Scoring (partials)

Free Energy Set 1 (partials)

Free Energy Set 2 (partials)

Stage 1

Pose Predictions (partials) Scoring (partials) Free Energy Set 1 (partials) Free Energy Set 2 (partials)

Free Energy Set 1 (Stage 2) - Kendall's Tau

Grand Challenge 2

Receipt ID

Filled circle indicates an incomplete set of predictions Green circle indicates your predictions (requires login)

D3R Grand Challenge 4 (2018-2019)

Pose Predictions

BACE Stage 1A
Pose Predictions (Partials)

Affinity Predictions

Cathepsin Stage 1 Combined Ligand and Structure Based Scoring

BACE Stage 1 Combined Ligand and Structure (No participation)

Ligand Based Scoring (Partials) (No participation)

BACE Stage 2

Combined Ligand and Structure

Free Energy Set

Ligand Based Scoring (No participation)

Structure Based Scoring (Partials)(No participation) Structure Based Scoring (Partials)

BACE Stage 1B Pose Prediction (Partials)

Dr. Kaifu Gao Dr. D Nguyen

1/4

TDA is based on the multiscale simplicial complex

***** Graph models and measurements:

Graph Laplacian; Fiedler Eigenvalue; Fiedler eigenvector; Shortest path; Clique; Cluster coefficient; Closeness; Centrality; Betweenness; Modularity; Cheeger constant; Erdos number; Percolation...

* Simplicial complex models and measurements:

Combinatorial Laplacian; Hodge theory; Betti number; Euler characteristics; Homology; Cohomology; Morse theory; Knot polynomials...

* Multiscale simplicial complex:

Persistent homology; Persistent cohomology...

Persistent Spectral theory (PerSpect)

Spectral models

- **Gamma** Spectral graph
- Spectral simplicial complex
- Spectral hypergraph

Filtration

- □ Nested sequence of Graphs
- Nested sequence of Simplicial Complexes
- Nested sequence of Hypergraph Laplacian

 $G^{0} \subseteq G^{1} \subseteq \dots \subseteq G^{m}$ $K^{0} \subseteq K^{1} \subseteq \dots \subseteq K^{m}$ $H^{0} \subseteq H^{1} \subseteq \dots \subseteq H^{m}$

PerSpect=Spectral models+Filtration

- Persistent spectral graph
- Persistent spectral simplicial complexes
 - Persistent spectral hypergraph

Hodge Laplacian matrix

The adjoint $\delta_n^* : C^{n+1}(K; \mathbb{F}) \to C^n(K; \mathbb{F})$ of the coboundary operator δ_n is defined by

$$(\delta_n f, g)_{C^{n+1}} = (f, \delta_n^* g)_{C^n},$$

for all $f \in C^n(K; \mathbb{F})$ and $g \in C^{n+1}(K; \mathbb{F})$.

Let $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . We define the *n*-dimensional Laplace operator $\Delta_n : C^n(K; \mathbb{F}) \to C^n(K; \mathbb{F})$ by

$$\Delta_n = \delta_{n-1}\delta_{n-1}^* + \delta_n^*\delta_n,$$

where δ_n is the coboundary operator.

Control Using Higher Order Laplacians in Network Topologies

Abubakr Muhammad and Magnus Egerstedt

Persistent spectral simplicial complex

Boundary operator

$$B_k(i,j) = \begin{cases} 1, & \text{if } \sigma_i^{k-1} \subset \sigma_j^k \text{ and } \sigma_i^{k-1} \sim \sigma_j^k \\ -1, & \text{if } \sigma_i^{k-1} \subset \sigma_j^k \text{ and } \sigma_i^{k-1} \not \sim \sigma_j^k \\ 0, & \text{if } \sigma_i^{k-1} \not \subset \sigma_j^k. \end{cases}$$

Combinatorial Laplacian (Hodge Laplacian)

$$\mathbf{L}_k = \mathbf{B}_k^T \mathbf{B}_k + \mathbf{B}_{k+1} \mathbf{B}_{k+1}^T$$

Multiplicity of zero eigenvalues (Persistent multiplicity) from PerSpect simplicial complex is equivalent to persistent Betti number.

PerSpect variables change with filtration parameter and incorporate in them related geometric information.

Ŕ

Ŕ

6

à

Variational multiscale modeling

Geometric flow for noise reduction

Geometric modeling of biomolecules

Delaunay triangulation based mesh generation

First and second fundamental form (Feng, Xia, etc., JCC, 2013)

Gaussian curvature

Minimal Surfaces A way to minimize energy and maximize stability

Viral morphology

The first man-made life, Bacterium, *M. mycoides*, based on information from a computer

Free energy functional of a surface model $G = \gamma(Area) = \int_U \gamma \sqrt{g} du_1 du_2$

where **gamma** is the surface tension and **g** is the Gram determinant: $g = 1 + S_1^2 + S_2^2$ of matrix $(g_{ij}) = \begin{pmatrix} 1 + S_1^2 & S_1S_2 \\ S_2S_1 & 1 + S_2^2 \end{pmatrix}$

Minimizing the surface free energy with the <mark>Euler-Lagrange equation</mark>, we arrive at the generalized mean curvature equation:

$$\Delta_{\Xi}S = \frac{1}{\sqrt{g}} \sum_{ij} \frac{\partial}{\partial x_i} \left(\gamma \sqrt{g} g^{ij} \frac{\partial}{\partial x_j} S \right) = \frac{1}{\sqrt{g}} \nabla \cdot \left(\frac{\gamma}{\sqrt{g}} \nabla S \right) = 0$$

where $\Delta_{\Xi}S$ is the Laplace-Beltrami operator. We solve the Laplace-Beltrami equation below to generate minimal molecular surfaces:

$$\frac{\partial S}{\partial t} = \sqrt{g} \left[\nabla \cdot \left(\frac{\gamma \nabla S}{\sqrt{g}} \right) \right]$$

(Bates, Wei & Zhao, 2006)

The first biomolecular surface constructed with the variational principle

Generalized Laplace-Beltrami flow:

Bates, Wei & Zhao, 2006 J. Comput. Chem. 2008

Differential geometry based nonpolar solvation model

 $G = \int_{\Omega} \left[\gamma |\nabla S| + Sp + (1 - S)U \right] dr$

(Wei, BMB, 2010; Chen, Zhao, Baker, Bates, Wei, 2011)

area + volume + van der Waals

$$\frac{\partial S}{\partial t} = \left| \nabla S \right| \left[\nabla \bullet \frac{\gamma \nabla S}{\left| \nabla S \right|} - p + U \right]$$

Laplace-Beltrami equation

Differential geometry based solvation model

 $G = \int_{O} [Nonpolar + Electro] dr$

(Wei, BMB, 2010; Chen, Baker, Wei, JCP,2010)

Geometric = area + volume + van der Waals:

Nonpolar = $\gamma |\nabla S| + Sp + (1 - S)U$

Electro = electric field + solute charges + solvent ions:

$$Electro = S\left(\frac{\varepsilon_m}{2} |\nabla \phi|^2 - \phi n\right) + (1 - S)\left[\frac{\varepsilon_s}{2} |\nabla \phi|^2 + kT \sum_i c_i \left(e^{-q_i \phi/kT} - 1\right)\right]$$

Variation of the total free energy functional $\frac{\partial S}{\partial t} = \nabla \cdot \left(\gamma \frac{\nabla S}{|\nabla S|} \right) - p + U - \frac{\varepsilon_m - \varepsilon_s}{2} |\nabla \phi|^2 + kT \sum_i c_i \left(e^{-q_i \phi/kT} - 1 \right) - \phi n$ Generalized Laplace Beltrami equation $-\nabla \cdot \left(\varepsilon(S) \nabla \phi \right) = (1 - S) \sum_i q_i c_i e^{-q_i \phi/kT} + Sn$

Generalized Poisson-Boltzmann equation

- Electrostatic binding and solvation energies
- pKa, pH values
- Electrostatic forces, ionic distributions
- Electrostatic matching between proteins and ligands
- Stability of protein folding
- Molecular dynamics
- A tool for rational drug design (interactions of receptorinhibitor, protein-ligand, protein-protein, signal, enzyme, regulator, etc.)

