Ассоциация точечных дефектов

Взаимодействие точечных дефектов приводит к образованию ассоциатов точечных дефектов. Образование ассоциатов является экзотермической реакцией т.е. при образовании ассоциатов всегда выделяется тепло. Природа взаимодействия и различные типы ассоциатов.

1) Электростатическое взаимодействие.

1.1 Ассоциат = катионная вакансия.....анионная вакансия

Пример: NaCl
$$\langle O \rangle \leftrightarrow V'_{Na} + V^{\bullet}_{Cl} \leftrightarrow V'_{Na} \dots V^{\bullet}_{Cl}$$

$$= \begin{bmatrix} V'_{Na} \dots V^{\bullet}_{Cl} \end{bmatrix} \cdot \left[V^{\bullet}_{Cl} \right] \cdot \exp(-\frac{\Delta H_{acc}}{k \cdot T}) = K_{III} \cdot \exp(-\frac{\Delta H_{acc}}{k \cdot T})$$

Энтальпия образования ассоциата (V'_{Na} V^{\bullet}_{Cl}) в NaCl равна $\Delta H_{acc} = -0.53$ эВ.

Ассоциация точечных дефектов

Ассоциат = примесный атом....вакансия

Пример: NaCl допированный CaCl₂.

$$CaCl_2 \rightarrow Ca^{\bullet}_{Na} + V'_{Na} + 2 Cl^{x}_{Cl}$$

 $Ca^{\bullet}_{Na} + V'_{Na} \leftrightarrow Ca^{\bullet}_{Na} \dots V'_{Na}$

$$\left[Ca^{\bullet}_{Na}...V'_{Na}\right] = \left[V'_{Na}\right] \cdot \left[Ca^{\bullet}_{Na}\right] \cdot \exp\left(-\frac{\Delta H_{acc}}{k \cdot T}\right)$$

Энтальпия образования ассоциата ($Ca^{\bullet}_{Na}...V'_{Na}$) равна ΔH_{acc} =-0.6 эВ.

Возможно образование тройных ассоциатов:

$$V'_{Na}$$
...... V^{\bullet}_{Cl} V'_{Na}
 V^{\bullet}_{Cl} V^{\bullet}_{Cl}
 Ag^{\bullet}_{i} Ag^{\bullet}_{i}

Ассоциация точечных дефектов

2) Упругое взаимодействие.

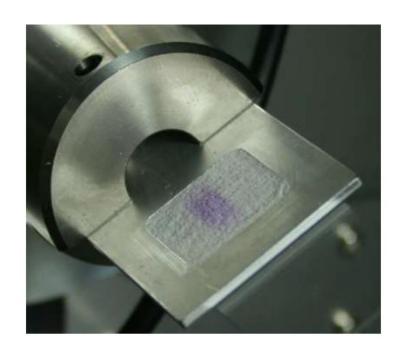
В металлах образование ассоциатов определяется упругим взаимодействием между точечными дефектами. Образование ассоциатов уменьшает число разорванных связей и приводит к уменьшению упругих искажений.

Пример: Образование бивакансии в меди:

$$V_{Cu}^x + V_{Cu}^x \leftrightarrow V_{Cu}^x \dots V_{Cu}^x$$
, $\Delta H_{acc} = -0.1 \ \exists B$

Образование ассоциата «примесный атом.....вакансия» в алюминии:

$$V_{Al}^x + In_{Al}^x \leftrightarrow V_{Al}^x \dots In_{Al}^x$$
, $\Delta H_{acc} = -0.4 \ 3B$

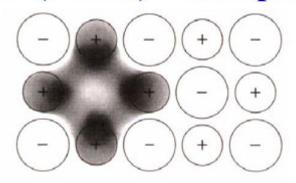

3) Химическое взаимодействие.

Пример: Образование бивакансии в SnS

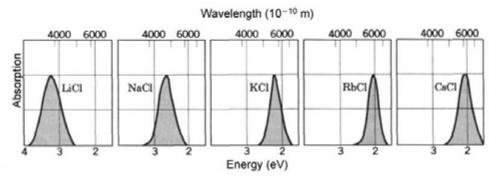
$$V_{Sn}^x + V_{Sn}^x \leftrightarrow V_{Sn}^x \dots V_{Sn}^x$$
, $\Delta H_{acc} = -1.2 \ 9B$

Значение энтальпии образования близко к энтальпии образования молекулы S_2 .

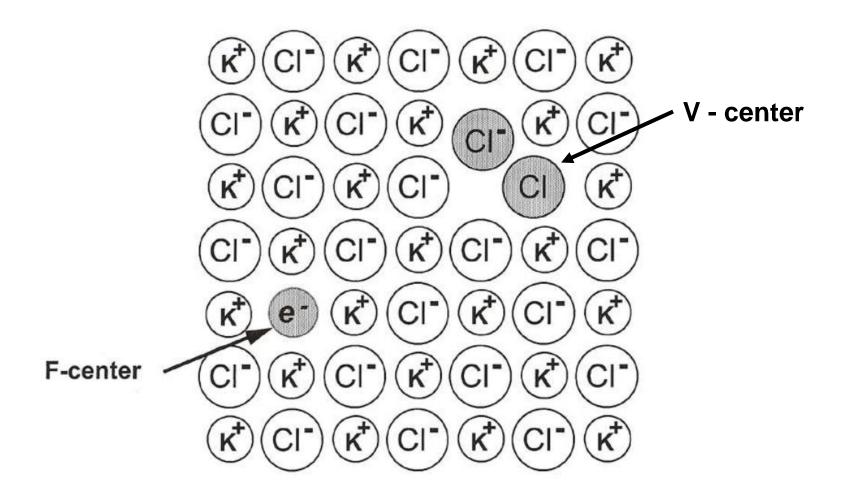
Центры окраски



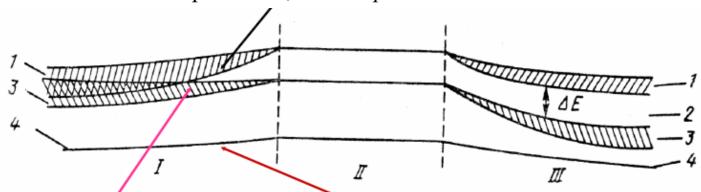
KCl NaCl


В парах щелочного металла или при облучении рентгеновским излучением галогениды щелочных металлов приобретают окраску.

F-центр = анионная вакансия + электрон Пример: Na(г)↔Na^X_{Na} + V^x_{Cl}


F (Faber) - центры

$$W_n = \frac{\pi^2 \cdot h^2}{2mL^2} \cdot n^2$$

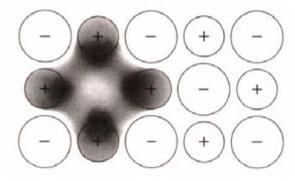


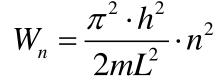
Энергия электрона вблизи анионной вакансии имеет дискретный набор уровней, аналогично электрону в потенциальном ящике. Окраска кристалла связана с поглощением света при переходе электрона между этими уровнями. При увеличении размера анионной вакансии (от LiCl до CsCl) длина волны поглощенного света увеличивается.

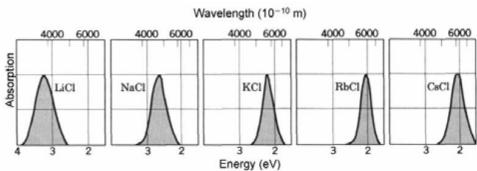
ЗОННАЯ ЭНЕРГЕТИЧЕСКАЯ СТРУКТУРА КРИСТАЛЛА

Над валентной зоной находится зона, которая может быть потенциально занята электронами и образуется из совокупности несвязывающих орбиталей, - зона проводимости

Валентные электроны, сильно взаимодействуют, и соответствующие энергетические уровни занимают широкую полосу - *валентную зону*

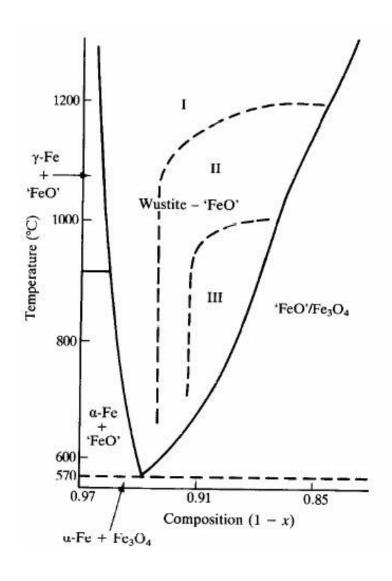

Внутренние электроны атомов почти не взаимодействуют, их остовы мало перекрываются, и соответствующая зона слабо расщепляется


- I металл, III полупроводник (диэлектрик); II изолированный атом, ΔE ширина запрещенной зоны (2).
- 1 зона проводимости, 2 запрещенная зона, 3 валентная зона,
- 4 внутренний уровень.


ЗОННАЯ ЭНЕРГЕТИЧЕСКАЯ СТРУКТУРА КРИСТАЛЛА

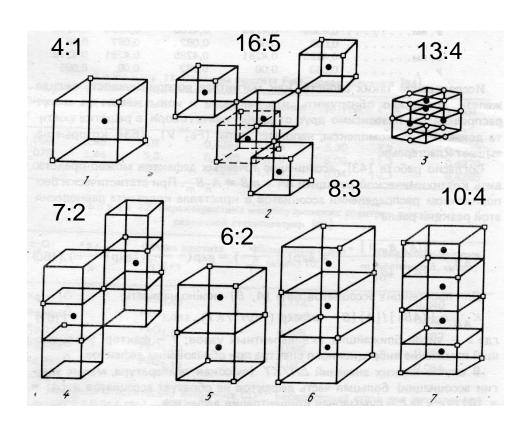
- Валентная зона не перекрывается с зоной проводимости, когда величина ΔE существенно больше тепловой энергии (при комнатной температуре $\approx 0,1$ эВ).
- Этому случаю отвечает образование *диэлектриков* и *полупроводников*. Типичные диэлектрики есть как среди ионных кристаллов, например LiF и CaF₂ (12 эВ), так и среди ковалентных кристаллов, например алмаз (5,3 эВ).
- Типичные полупроводники кристаллы со структурами типа алмаза-сфалерита: Ge (0,75), Si (1,12), AlSb (1,60), CdS (2,3 эВ).
- На границе между полупроводниками и диэлектриками находится карбид кремния SiC (3 эВ).

F (Faber) - центры



F-центр = анионная вакансия + электрон Пример: Na(г)↔Na^X_{Na} + V^x_{Cl}

V-центр = катионная вакансия + дырка Пример: $1/2Cl_2$ ↔ Cl_{Cl} + V_{Na}


Фазовая диаграмма Fe-O и область стабильности фазы вюстита ${\rm FeO_{1-x}}$

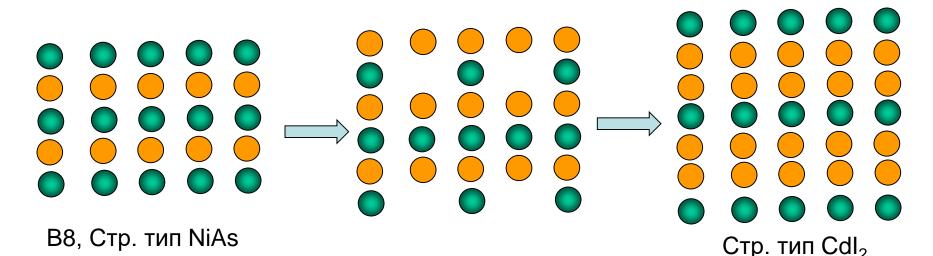
Образование кластеров в вюстите (FeO)

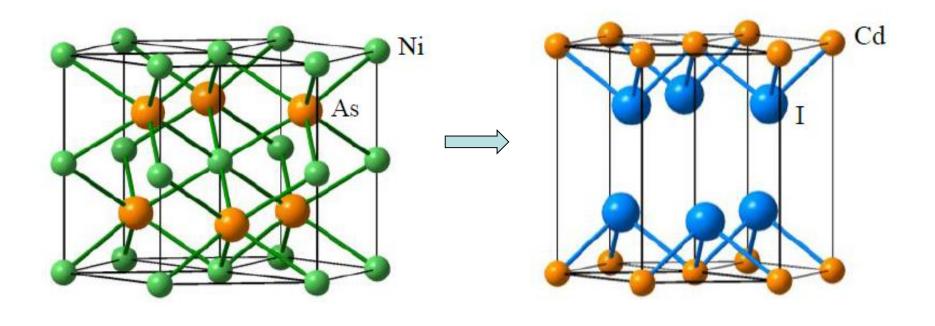
$$^{1}\!\!/_{2} O_{2} \leftrightarrow O^{x}_{O} + V''_{Fe} + 2Fe^{\bullet}_{Fe}$$
 $Fe^{\bullet}_{Fe} = h^{\bullet}$ $Fe^{\bullet}_{Fe} \leftrightarrow Fe^{\bullet \bullet \bullet}_{i} + V''_{Fe}$ - выход Fe^{3+} в межузельную позицию с образованием вакансии.

Кластер = вакансии железа + межузельные ионы железа

Кластер	ΔНасс, эВ	
4:1	-2	
16:5	-2.4	
13:4	-2.1	
6:2	-2.4	
8:3	-2.5	
13:4	-1.9	

Образование сверхструктур и ПКС


Точечные дефекты могут образовывать упорядоченные структуры – сверхструктуры. Увеличение температуры приводит к разупорядочению.

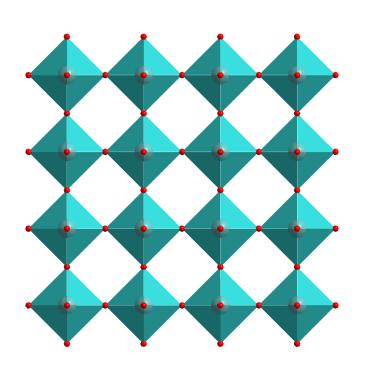

В некоторых случаях образование структуры продукта реакции можно описать через введение в исходную структуру вакансий (или межузельных атомов). В данном случае вакансия из дефекта превращается в полноценный элемент новой структуры.

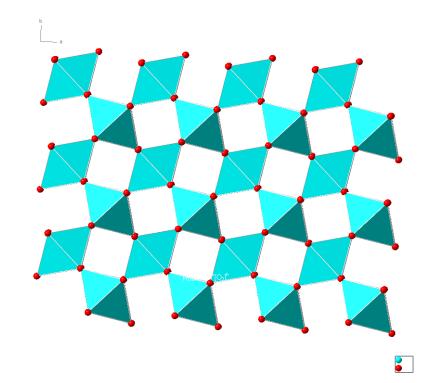
Пример:

$$TiS + \frac{1}{2} S_2 \leftrightarrow TiS_2$$

 $\frac{1}{2} S_2 \leftrightarrow S_S^x + V_{Ti}^x + 2h^{\bullet}$

При сульфидировании TiS образуется ряд соединений, которые различаются количеством и взаимным расположением вакансий титана.



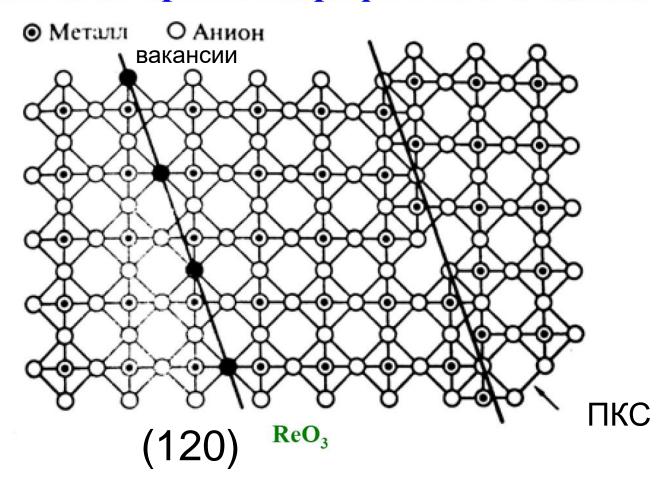

В8, Стр. тип NiAs

 $Cтр. тип CdI_2$

Упорядочение и аннигиляция дефектов путём перегруппировки координационных полиэдров.

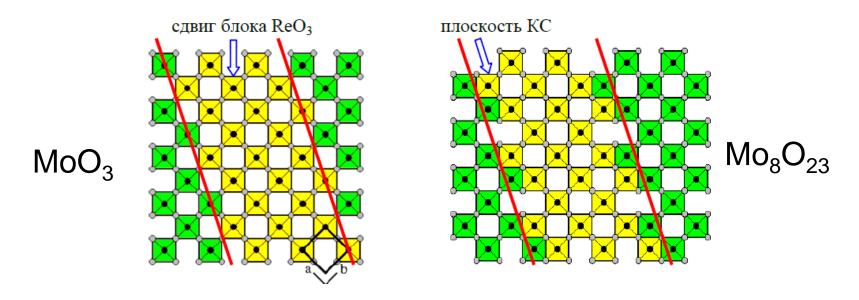
 $Структурный тип ReO_3$

Структурный тип рутила ТіО2

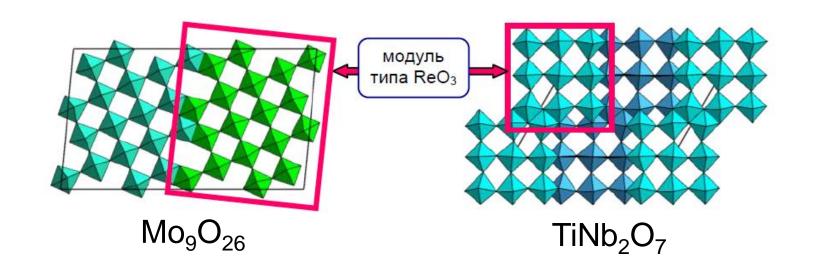

$$n WO_3 = W_nO_{3n-1} + \frac{1}{2} O_2$$

Образование плоскостей кристаллографического сдвига (ПКС).

При удалении кислорода из оксидов со структурой ReO_3 и рутила образуется ряд близких по структуре фаз, в которых области исходного оксида разделены плоскостями кристаллографического сдвига (ПКС), которые представляют собой тонкие, пластинчатые области с иной структурой и составом. Образующиеся промежуточные фазы имеют состав M_nO_{3n-1} , n=8,9... и отличаются количеством и взаимным расположением ПКС.


На первом этапе реакции образуются вакансии кислорода, которые располагаются не хаотически, а локализуются в определенных плоскостях. После накопления значительного количества вакансий происходит перегруппировка координационных полиэдров, приводящая к исчезновению вакансий. Так в WO₃ в ПКС октаэдры вокруг атомов металла имеют общие ребра, тогда как в исходной структуре у них лишь общие вершины.

Плоскости кристалографического сдвига



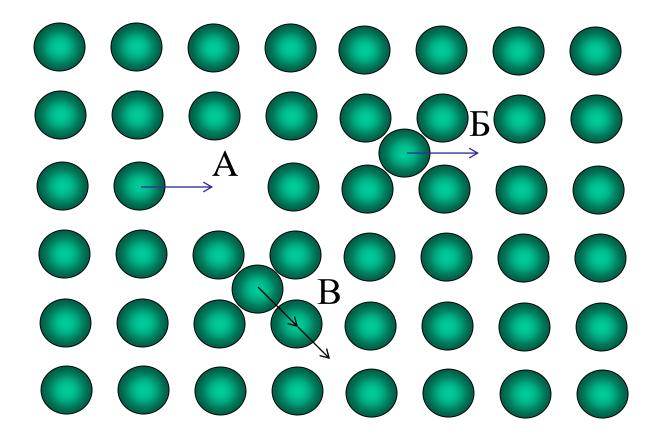
Соединения: MoO_3 , ReO_3 , WO_3 - M_nO_{3n-1} , n=8,9... TiO_2 - M_nO_{2n-1} , n=4,5...

Плоскости кристаллографического сдвига.

Образование блочных структур.

Лекция 12

Диффузия в кристаллах

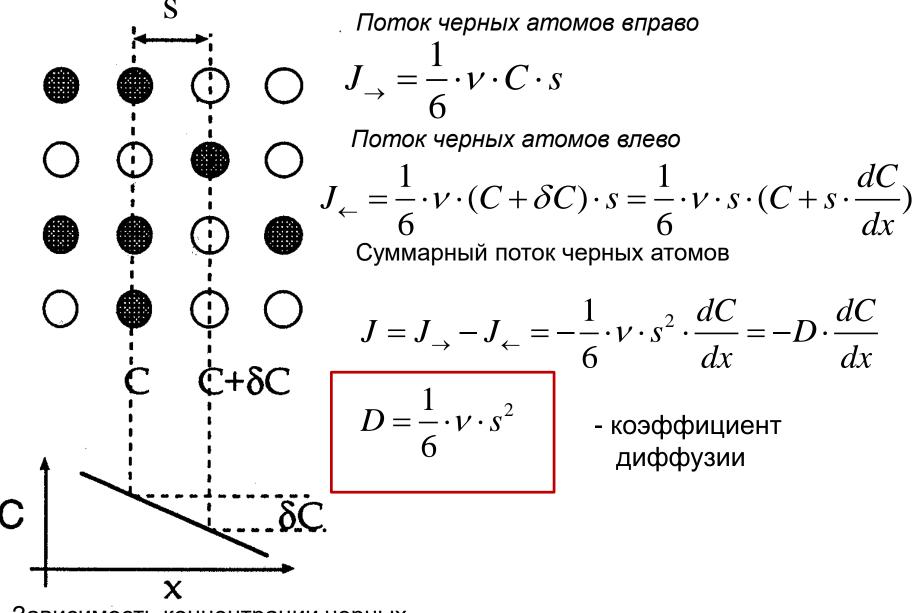

План

- Основные механизмы диффузии в кристаллах.
- Хаотическая диффузия.
- Направленная диффузия.
- Ионная проводимость.

В идеальном кристалле атомы неподвижны. Появление вакансии способствует подвижности атомов.

Основные механизмы диффузии в кристаллах

- А вакансионный (наиболее распространенный)
- Б прямой межузельный (пример: С в Fe)
- В непрямой межузельный или эстафетный (пример: Ag_i^{\bullet} в AgBr)


Diffusio (лат.) - pacnpocmpaнeние.

1855 — А. Фик получил закон, связывающий поток частиц с градиентом концентрации при исследовании растворов соли в воде.

$$j = -D \cdot \frac{dC}{dx}$$

- D коэффициент диффузии; С концентрация.
- Характерные величины, см²/с:
- Газы 10 ⁻¹
- Жидкости 10-5
- Твёрдые вещества < 10-8

Первое сообщение о диффузии в твёрдом теле — 1896 Р. Аустен, диффузионная пара Рb+Au, 200 °C, 10 дней.

Зависимость концентрации черных атомов от расстояния

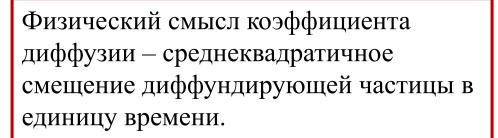
Хаотическая диффузия — равновероятное движение атомов во всех направлениях.

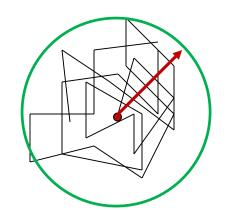
Рассмотрим одномерный случай - равная вероятность прыжка вправо и влево. Пусть s - длина прыжка.

Позиция после первого прыжка $x_1 = 0 \pm s$.

Средняя позиция

$$\overline{x}_1 = 0$$

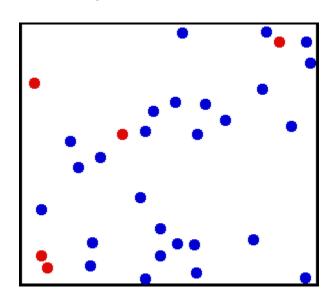

Средняя квадратичная позиция $\bar{x}_1^2 = \overline{(0 \pm s)}^2 = s^2$

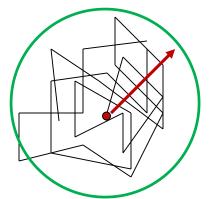

Позиция после второго прыжка $x_2 = x_1 \pm s$.

Средняя квадратичная позиция
$$\overline{x}_2^2 = \overline{(x_1 + s)}^2 = \overline{(x_1^2 + 2x_1 \cdot s + s^2)} = \overline{x}_1^2 + s^2 = 2s^2$$

Средняя квадратичная позиция после N прыжков

$$\overline{x}_N^2 = N \cdot s^2 = \nu \cdot t \cdot s^2 = 6D \cdot t$$




Диффузионный путь:

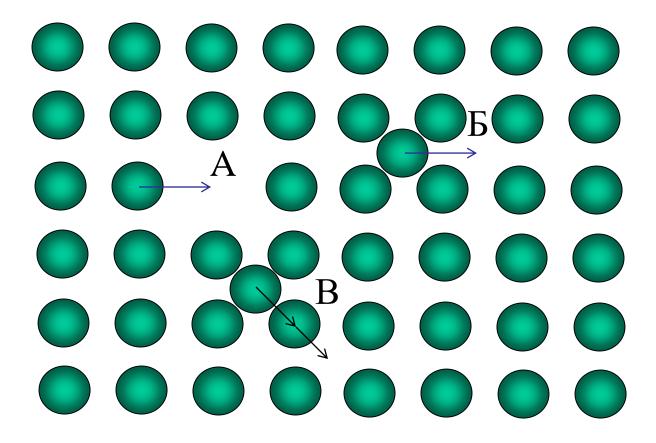
$$\overline{x} = \sqrt{\overline{x}^2} = s \cdot \sqrt{N} = s \cdot \sqrt{v \cdot t} = \sqrt{6D \cdot t}$$

Броуновское движение

Броун, 1827

Соотношение Энштейна - Смолуховского

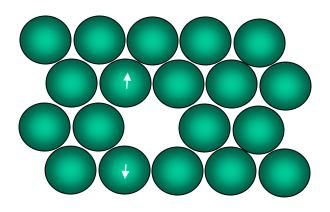
$$\overline{x}^2 = \frac{R \cdot T}{3\pi \cdot \sigma \cdot r \cdot N_a} \cdot t = 6D \cdot t$$

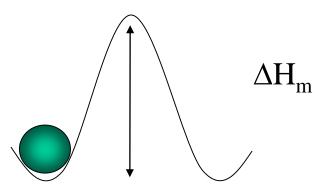

 σ — вязкость среды; r — радиус частицы; N_a — число Авогадро. А. Энштейн «О движении взвешенных в покоящейся жидкости частиц, требуемом молекулярно-кинетической теорией теплоты» Annalen der Physik, 1905

Физический смысл коэффициента диффузии — среднеквадратичное смещение диффундирующей частицы в единицу времени.

Диффузионный путь

$$\overline{x} = \sqrt{\overline{x}^2} = s \cdot \sqrt{N} = s \cdot \sqrt{v \cdot t} = \sqrt{6D \cdot t}$$


Основные механизмы диффузии в кристаллах



- А вакансионный (наиболее распространенный)
- Б прямой межузельный (пример: С в Fe)
- В непрямой межузельный (пример: Ag_{i}^{\bullet} в AgBr)

Выражения для коэффициента диффузии.

Вакансионный механизм

Коэффициент диффузии вакансии

$$D_V = \frac{1}{6} \cdot v \cdot s^2 = \frac{1}{6} \cdot s^2 \cdot v_0 \cdot \exp(\frac{\Delta S_m}{k}) \cdot \exp(-\frac{\Delta H_m}{k \cdot T}) =$$

$$D_o^V \cdot \exp(-\frac{\Delta H_m}{k \cdot T})$$

 v_{o} - частота колебаний атомов (v_{o} = 10^{13} с⁻¹ выше температуры Дебая); s – длина прыжка (например, $s = a / \sqrt{2}$ для ГЦК решётки , где a - параметр ячейки).

Коэффициент диффузии атома

$$D_a = D_V \cdot [V] \cdot f = D_o \cdot \exp(-\frac{\Delta H_D}{k \cdot T})$$

[V] — концентрация вакансий; f — корреляционный фактор (определяет неравноценность позиций в решётке для прыжков атома). f = 1-1/Z, где Z — координационное число.

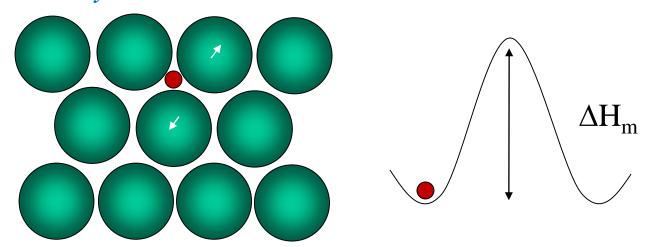
1) Металлы

$$[V_M^X] = \exp(\Delta S_{III} / k) \cdot exp(-\frac{\Delta H_{III}}{k \cdot T})$$

$$D_{V} = \frac{1}{6} \cdot s^{2} \cdot v_{0} \cdot \exp(\frac{\Delta S_{m} + \Delta S_{III}}{k}) \cdot \exp(-\frac{\Delta H_{m} + \Delta H_{III}}{k \cdot T}) = D_{o} \cdot \exp(-\frac{\Delta H_{D}}{k \cdot T})$$

$$\Delta H_D = \Delta H_m + \Delta H_{III}$$

2) Ионные кристаллы АХ


$$[V'_A] = [V^{\bullet}_X] = \exp(\Delta S / 2k) \cdot exp(-\frac{\Delta H_{III}}{2k \cdot T})$$

$$D_{V} = \frac{1}{6} \cdot s^{2} \cdot v_{0} \cdot \exp(\frac{2\Delta S_{m} + \Delta S_{III}}{2k}) \cdot \exp(-\frac{2\Delta H_{m} + \Delta H_{III}}{2k \cdot T}) = D_{o} \cdot \exp(-\frac{\Delta H_{D}}{k \cdot T})$$

$$\Delta H_D = \Delta H_m + \frac{\Delta H_{III}}{2}$$

Выражения для коэффициента диффузии.

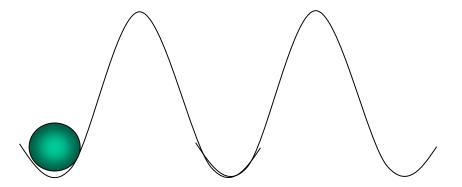
Межузельный механизм

$$D_{i} = \frac{1}{6} \cdot s^{2} \cdot \nu_{0} \cdot \left[V_{i}\right] \cdot \exp\left(\frac{\Delta S_{m}}{k}\right) \cdot \exp\left(-\frac{\Delta H_{m}}{k \cdot T}\right)$$

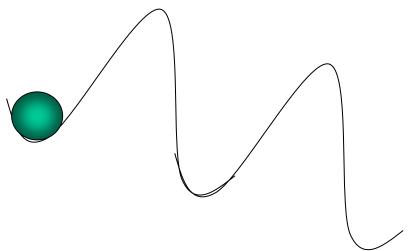
 $[V_i]$ – концентрация незанятых междоузлий.

Пример: атомы внедрения в металлах (H, C, B в Ta, Mo, V, Fe).

Энтальпия активации дифузии


металл	ΔH_{m} , кДж/моль	ΔH_{D} , кДж/моль	Т _{пл} , К
Al	60	130	933
Ag	90	180	1233
Cu	100	210	1356
W	330	660	3653

$$D = D_o \cdot \exp(-\frac{\Delta H_D}{k \cdot T})$$


ОЦК, ГЦК, ГПУ металлы, галогениды щелочных металлов, оксиды со структурой NaCl (CaO, MgO, CoO, FeO, NiO и т.д.), карбиды и бориды металлов

 D_0 ≈ $10^{-2}-1$ см 2 /с, ΔH_D = 15-20 RT $_{\Pi\Pi}$, $D(T_{\Pi\Pi})=10^{-10}-10^{-8}$ см 2 /с Вещества со структурой алмаза

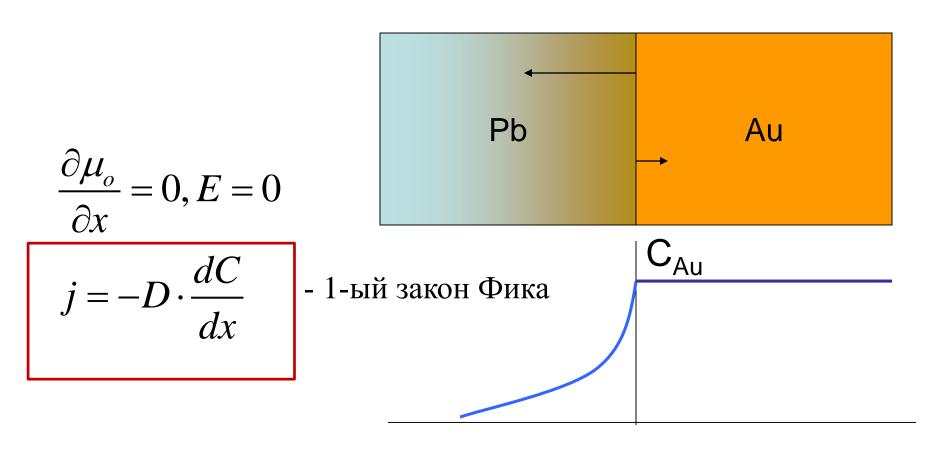
$$D_0 \approx 10^4 \text{ cm}^2/\text{c}$$
, $\Delta H_D = 35 \text{ RT}_{IIJ}$, $D(T_{IIJ}) = 10^{-16} \text{ cm}^2/\text{c}$

Хаотическая диффузия – диффузия атомов в кристалле в отсутствии градиента концентрации и внешних сил.

Направленная диффузия – направленное движение атомов в градиенте химического потенциала или внешних сил.

Направленная диффузия

$$j = -C \cdot \frac{D}{k \cdot T} \cdot \frac{\partial \eta}{\partial x}$$
$$\eta = \mu + q \cdot \varphi = \mu_0 + k \cdot T \cdot \ln C + q \cdot \varphi$$


- электрохимический потенциал, μ_o — независимая от концентрации часть хим. потенциала , C- концентрация, q — заряд, ϕ — электростатический потенциал

$$\frac{\partial \eta}{\partial x} = \frac{\partial \mu_0}{\partial x} + k \cdot T \cdot \frac{1}{C} \cdot \frac{\partial C}{\partial x} + q \cdot \frac{\partial \varphi}{\partial x}$$

$$j = -C \cdot \frac{D}{kT} \cdot \frac{\partial \mu_0}{\partial x} - D \cdot \frac{\partial C}{\partial x} + C \cdot \frac{D}{kT} \cdot q \cdot E$$

- суммарный поток, где Е – напряженность электрического поля.

Диффузия в градиенте концентрации – первый закон Фика

Зависимость концентрации золота от расстояния.

1896 Р. Аустен, диффузионная пара Рb+Au, 200 °C, 10 дней.

Диффузия в градиенте давления – эффект Горского

В изогнутой стальной (сплав железа с углеродом) пластине происходит обогащение углеродом растянутой области и обеднение сжатой.

$$\frac{\partial C}{\partial x} = 0, E = 0$$

$$j = -C \cdot \frac{D}{kT} \cdot \frac{\partial P}{\partial x} \cdot \Omega$$

- поток в градиенте давления,

углерода от толщины пластины

Зависимость концентрации

 Ω – атомный объём

Диффузия в электрическом поле – ионная проводимость

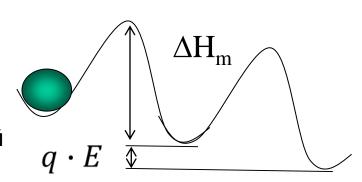
$$\frac{\partial C}{\partial x} = 0, \frac{\partial \mu_o}{\partial x} = 0$$

$$j = C \cdot \frac{D}{kT} \cdot q \cdot E$$

- поток в электрическом поле

$$i=q\cdot j=\sigma\cdot E$$
 -закон Ома, σ – удельная электропроводность (Ом-1·м-1=См/м)

$$\sigma = C \cdot \frac{D}{kT} \cdot q^2 = C \cdot q \cdot \chi$$


$$\chi = \frac{D}{kT} \cdot q$$

 $\chi = \frac{D}{kT} \cdot q$ - подвижность частицы- соотношение Нерста-Энштейна

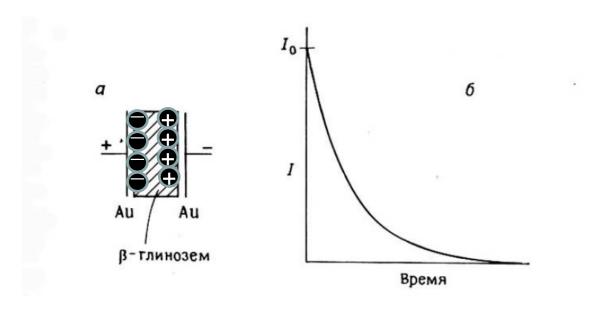
$$\sigma = \sum_{i}^{N} \sigma_{i}$$

$$t_i = \frac{\sigma_i}{\sum_{i=1}^{N} \sigma_i}$$

 $t_i = rac{\sigma_i}{\sum\limits_{N}^{N} \sigma_i}$ число переноса - это вклад проводимости по данному типу носителей в общую проводимость

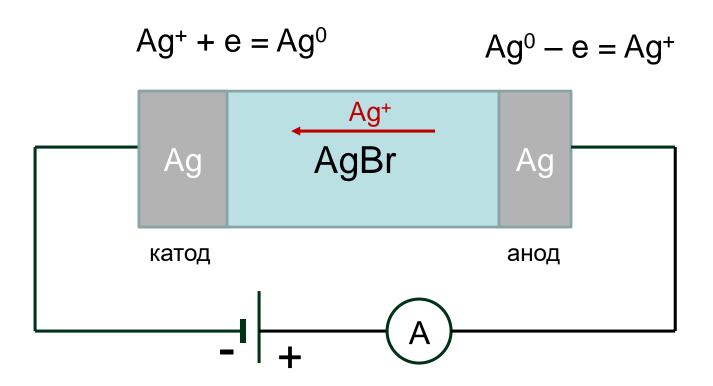
В нестехиометрических соединениях преобладает электронная проводимость (по е' или h•), а в стехиометрических — ионная проводимость (вакансии или междоузельные атомы).

Температурная зависимость ионной удельной электропроводности имеет вид:

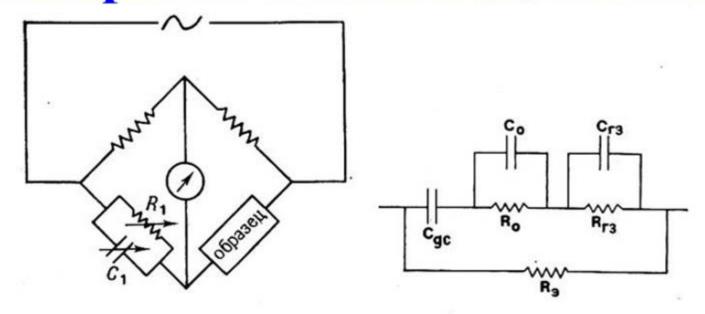

$$\sigma = C \cdot \frac{D}{k \cdot T} \cdot q^{2} = C \cdot q^{2} \cdot \frac{D_{o}}{k \cdot T} \cdot \exp(-\frac{\Delta H_{m}}{k \cdot T})$$

$$\sigma \cdot T = \sigma_{o} \cdot C \cdot \exp(-\frac{\Delta H_{m}}{k \cdot T})$$

$$\ln \sigma \cdot T = \ln \sigma_{o} + \ln C - \frac{\Delta H_{m}}{k \cdot T}$$


Из измерений ионной проводимости, можно получить информацию о концентрации дефектов и их подвижности.

Измерение свойств (постоянный ток)


Измерения при постоянном токе приводят к поляризации. Чтобы это не происходило, необходим выбор совместимых электродов, обладающих электрон-ионной проводимостью по подвижным ионам в образце.

Метод Тубанта

Измерения при постоянном токе с совместимыми электродами, обладающими электрон-ионной проводимостью по подвижным ионам в образце.

Измерение свойств (переменный ток)

Измерения при переменном токе в широком диапазоне частот позволяют определить сопротивление образца, электродную ёмкость, ёмкости и сопротивления границ зёрен и вклад электронной проводимости.

Контрольные вопросы

- 1. Что такое центры окраски? При каких условиях они образуются? Как изменится спектр поглощения F-центра в серии галогенидов щелочных металлов при переходе от LiCl к RbCl? Почему?
- 2. Изменится ли спектр поглощения F-центра NaCl, если выдержать NaCl в парах: Na, K, Rb? Почему?
- 3. Какие кластеры образуются в вюстите (FeO) при его окислении?
- 4. Приведите примеры веществ в которых образуются сверхструктуры точечных дефектов и плоскости кристаллографического сдвига.
- 5. Диффузия в твердых телах. Основные механизмы диффузии.
- 6. Вакансионный механизм диффузии. Выражения для коэффициента диффузии вакансии и атома.
- 7. Межузельный механизм диффузии. Выражение для коэффициента диффузии межузельного атома. Примеры.
- 8. Хаотическая и направленная диффузия.
- 9. Диффузия в градиенте концентрации. 1-й закон Фика.
- 10. Диффузия в поле механических напряжений эффект Горского.
- 11. Ионная проводимость. Соотношение Нерста-Энштейна. Число переноса.
- 12. Параметры, которые можно получить из температурной зависимости ионной проводимости.