Лекция 18

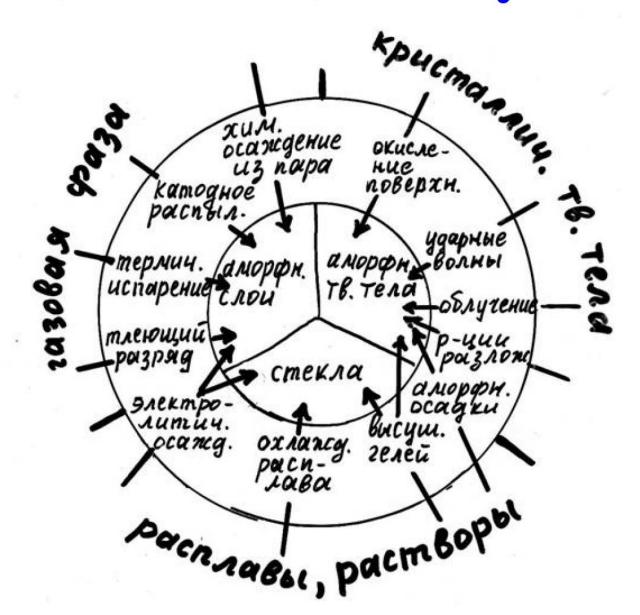
Аморфные вещества

Аморфные вещества — вещества, в которых наблюдается отсутствие кристаллических областей (областей с дальним порядком) и которые в силу этого обладают изотропными свойствами.

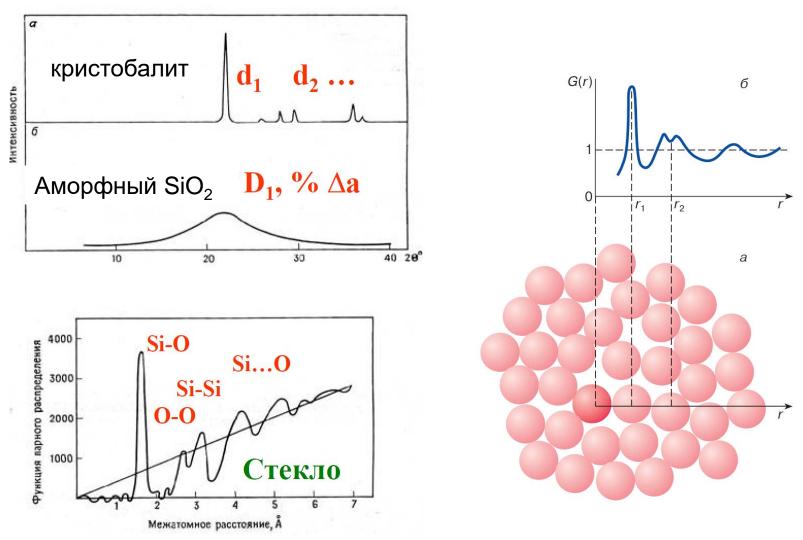
Рентгеноаморфные вещества — вещества со значительно уширенными рефлексами рентгеновской дифракции (или их отсутствием). Могут быть аморфными или кристаллическими с очень маленькими размерами частиц (ОКР) и значительным количеством дефектов.

Стекло — аморфное твёрдое тело («переохлажденная», «замороженная» вязкая жидкость), полученная охлаждением расплава без его кристаллизации. Стекло имеет температурный диапазон размягчения.

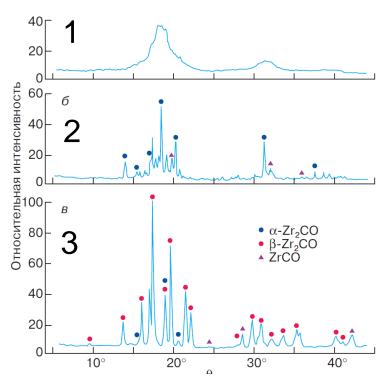
Классификация аморфных веществ

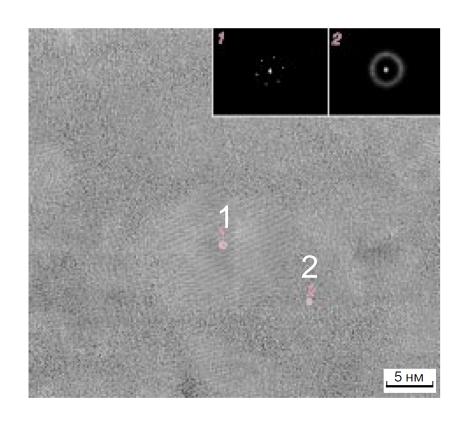

1. По типу связи:

```
Ковалентные (оксиды, элементы, полимеры....)
Ионные (галогениды, нитраты....)
С водородной связью (замороженные растворы солей....)
Молекулярные (замороженные органические жидкости....)
Металлическая (сплавы....)
```

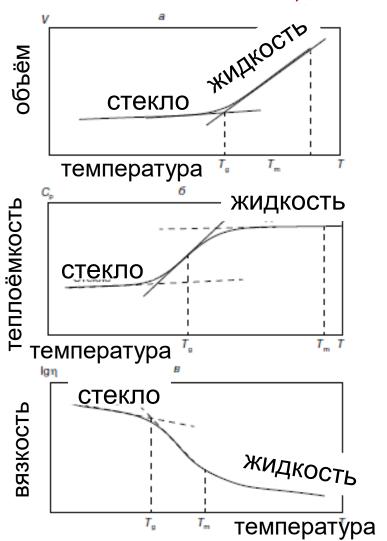

2. По химическому составу:

```
Элементы (S, Se, Te....)
Оксиды(SiO<sub>2</sub>, B<sub>2</sub>O<sub>3</sub>....)
Халькогениды (As-S, P-Se....)
Нитраты (KNO<sub>3</sub>-Ca(NO<sub>3</sub>)<sub>2</sub>....)
Смешанные соли (галогенхалькогенидные....)
Водные растворы (HCl, LiCl....)
Металлические (Au-Si, Fe-B, Co-P)
```


Общие методы получения

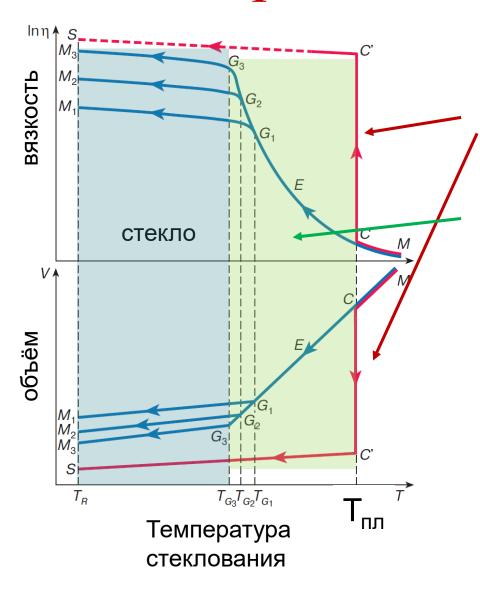

Функция радиального распределения

Функция радиального распределения в аморфном SiO₂



Рентгеновская дифракция от стекла $Zr_{65}Co_{35}$ (1) и продуктов его частичной (2) и полной кристаллизации (3).

ПЭМ изображение и микродифракционные картины кристаллической (1) и аморфной области (2) в стекле Fe₈₈Hf₁₀B₂


Образование стекла

Температурная зависимость скорости зарождения (1), скорости роста (2), кристаллизации (3) и вязкости (4).

Образование стекла

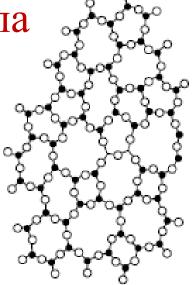
Фазовый переход 1 рода при кристаллизации расплава

Переохлажденная жидкость

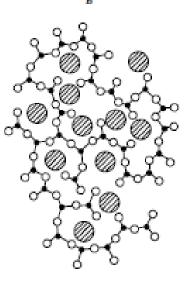
Объём и вязкость стекла определяются скоростью охлаждения. При изменении скорости закалки свойства стекла можно менять непрерывным образом. Температура стеклования возрастает с увеличением скорости охлаждения.

Полуэмпирические правила склонности веществ к образованию стёкол.

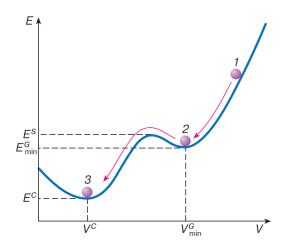
Правила Захариансена


- 1. К.Ч. Кислорода должно быть ≤ 2. *Образование 3-х мерной сетки без дальнего порядка*.
- 2. К.Ч. «других» атомов небольшие. Полиэдры не требующие плотной упаковки.
- 3. Координационные полиэдры соединяются вершинами и образуют 3-х мерную сетку. *Рыхлая и подвижная 3-х мерная сетка*.

Правила Сана и Роусона.


- 1. Чем выше энергия связи и ниже температура плавления, тем выше вероятность образования стекла.
- 2. Наличие цепочек из полиэдров в расплаве. Высокая вязкость расплава, трудность перестройки в кристалл.
- 3. Образование стёкол вблизи низкоплавких эвтектик.

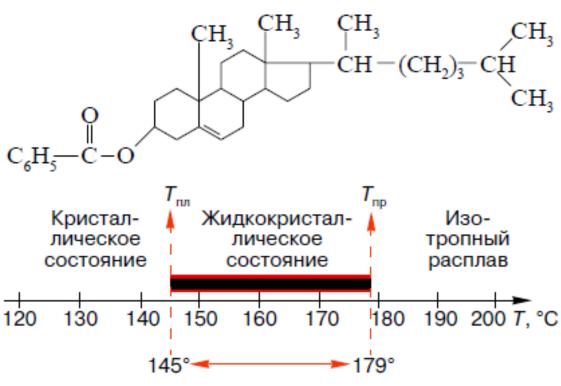
Кристаллический кварц



Аморфный кварц

Натриевое стекло

Релаксация


Лекция 18

Жидкие кристаллы

История открытия

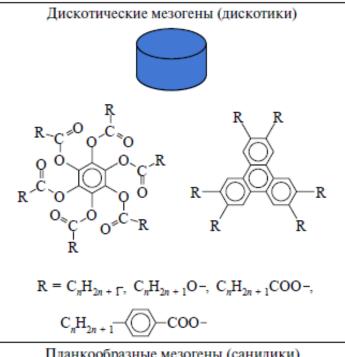
В 1888 г. Фридрих Рейнитцер впервые обнаружил явление, а кристаллограф Отто Леман ввёл понятие «жидкий кристалл». Жидкие кристаллы обладают одновременно свойствами жидкости (текучесть) и кристаллических тел (анизотропия свойств).

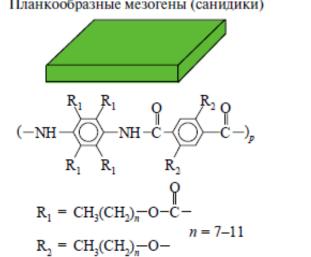
Первое жидкокристаллическое соединение – холестерилбензоат и диаграмма, иллюстрирующая температурную область существования ЖК-фазы.

Структура

• Жидкокристаллическое (мезоморфное) состояние наблюдается в органических веществах (сейчас известно более 100000 веществ образующих ЖК состояние), состоящих из ассиметричных молекул удлиненной, дискообразной или пластинчатой формы и характеризуется параллельной укладкой таких молекул.

Типичные примеры химических соединений, образующих жидкокристаллическую фазу.

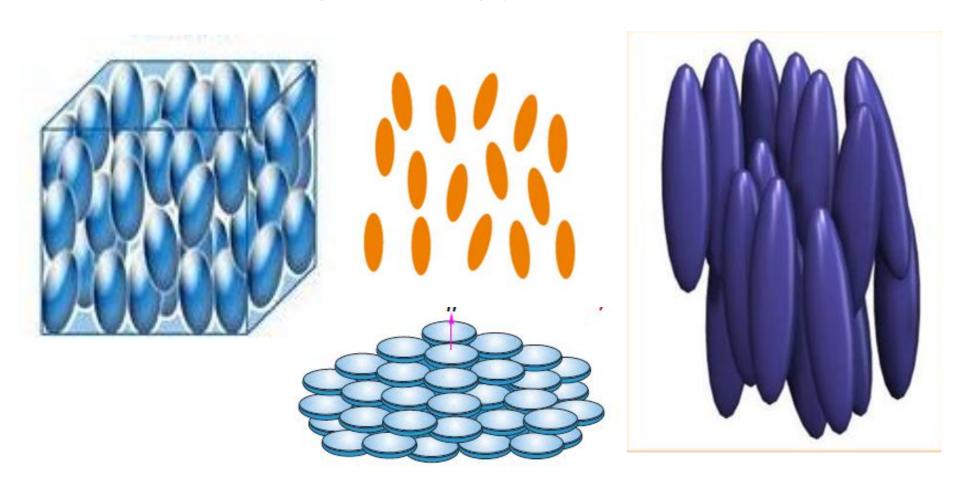

Стержнеобразные мезогены (каламитики)


$$CH_3O - CH = N - C_4H_3$$

$$\mathrm{CH_{3}(CH_{2})_{7}CH}\!=\!\!\mathrm{CH(CH_{2})_{7}COOK}$$

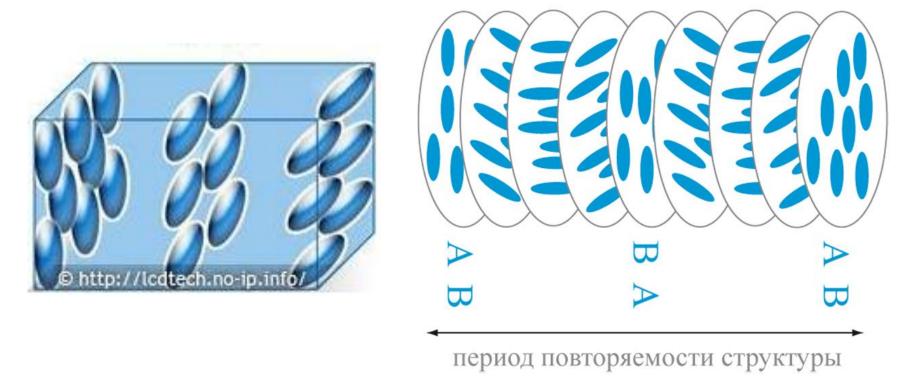
$$\begin{array}{c} CH_3 & CH_3 \\ CH - (CH_2)_3 - CH \\ CH_3 \end{array}$$

Планкообразные мезогены (санидики)

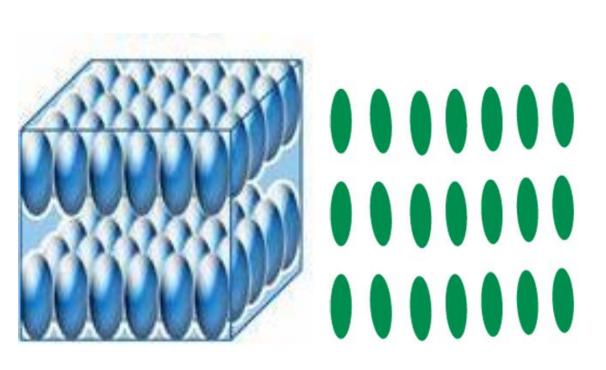


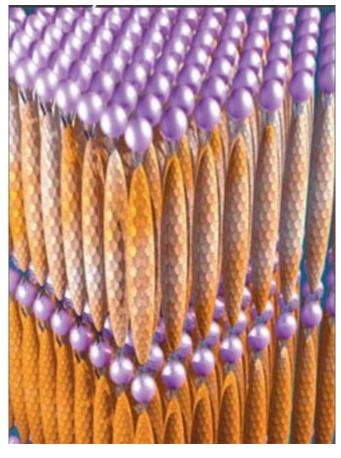
Жидкие кристаллы делятся на:

- •Термотропные образуются при изменении температуры;
- •Лиотропные образуются при растворении в жидкостях.

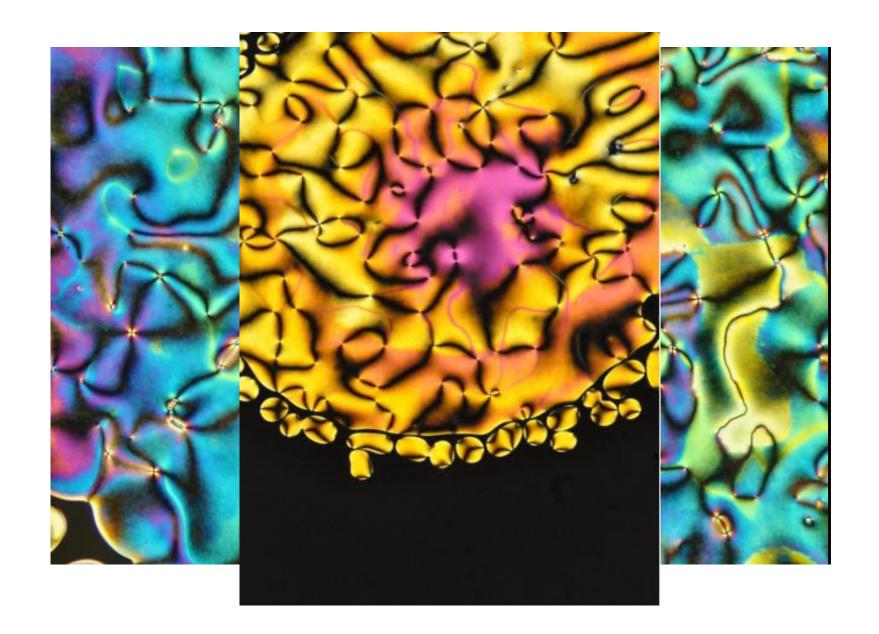

Термотропные жидкие кристаллы по характеру укладки молекул подразделяют на нематический, холестерический и смектический тип. Все типы характеризуются параллельным расположением соседних молекул внутри доменов.

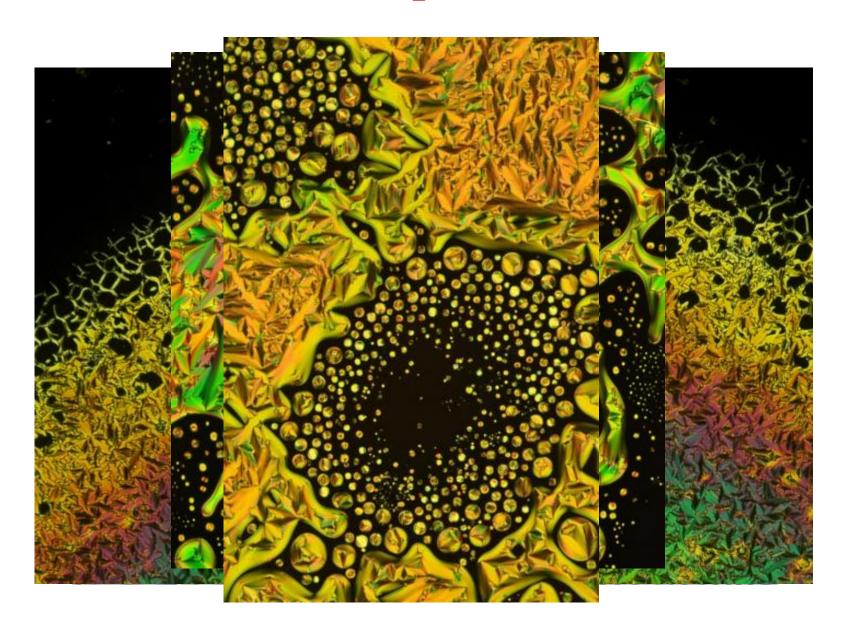
Нематический тип


Нематический тип характеризуется наличием только одномерного ориентационного порядка длинных (каламитики) или коротких (дискотики) осей кристалла.

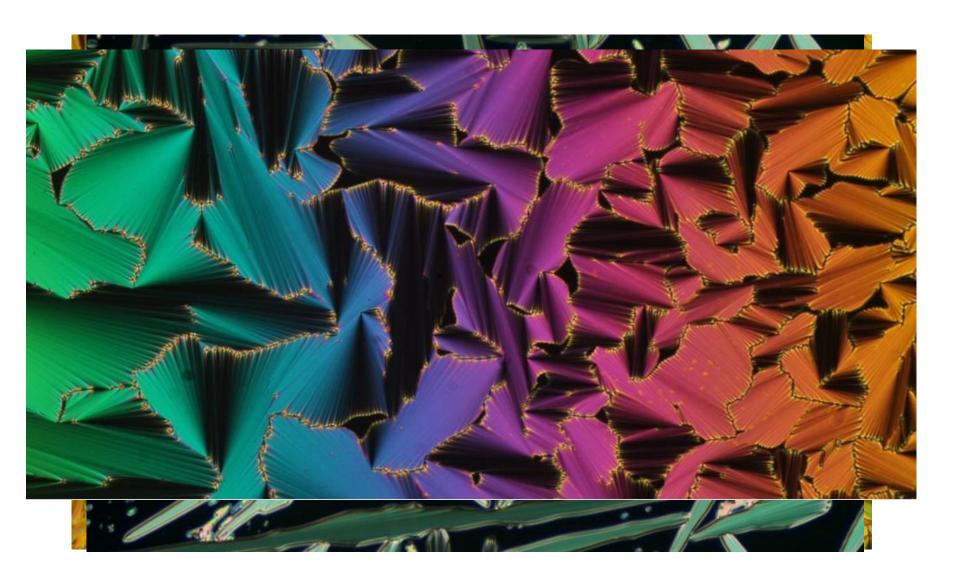

Холестерический тип

Холестерики состоят из хиральных (оптически активных молекул) и характеризуются одномерной упорядоченностью и периодической спиральной структурой.


Смектический тип



Смектики наиболее близки к кристаллическим веществам. Молекулы упорядочены в слоях, а слои могут смешаться относительно друг друга.


Нематический тип

Холестерический тип

Смектический тип

Применение

• Расположение молекул в жидких кристаллах изменяется под действием таких факторов, как температура, давление, электрические и магнитные поля; изменения же расположения молекул приводят к изменению оптических свойств, таких, как цвет, прозрачность и способность к вращению плоскости поляризации проходящего света.

ЖК индикатор

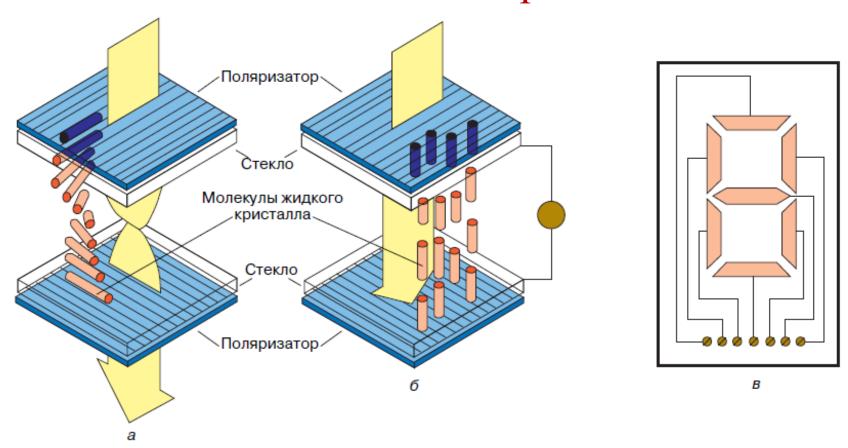
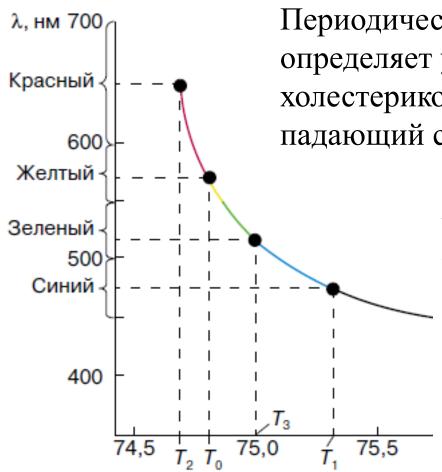



Схема работы ЖК-индикатора на твист-эффекте: a – до включения электрического поля, δ – после включения поля, b – семисегментный буквенно-цифровой электрод, управляемый электрическим полем.

Преимущества: низкие управляющие напряжения (1.5 - 5 B), малые потребляемые мощности (1-10 мкВт), высокая контрастность изображения, надёжность.

Холестерический тип

Периодическая спиральная структура определяет уникальное свойство холестериков — селективно отражать падающий свет.

 $\lambda(max) = P \cdot n,$ $\lambda(max) - длина волны$ отраженного света, P период холестерика, n показатель преломления

света.

Температурная зависимость длины волны селективного отражения света λ_{max} слоя холестерического жидкого кристалла – холестерилпеларгоната.

Применение

- Термография (медицина, производство, бытовая техника)
- Химические сенсоры
- Визуализация распределения давления, магнитных полей.
- Электрохромные устройства (ЖК индикаторы, дисплеи и т.д.).

Лекция 18

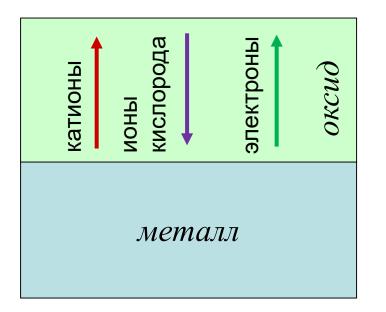
Механизмы некоторых твёрдофазных химических реакций.

План лекции:

- 1. реакции твёрдое + газ (жидкость)
- 2. реакции твёрдое + твёрдое

Реакции твёрдое + газ (жидкость) A(тв) + B(газ) = C(тв)

Реакции:


• окисления, сульфидирования, галогенирования металлов

Особенности:

- Образование сплошной плёнки продукта на поверхности металла;
- Диффузия ионов металла или неметалла (В) через слой продукта реакции;
- Перенос электронов или дырок через слой продукта реакции;
- Скорость реакции определяется диффузионной подвижностью ионов, электро-физическими свойствами и нестехиометрией продукта реакции.

Реакции твёрдое + газ. Окисление металлов.

 O_2

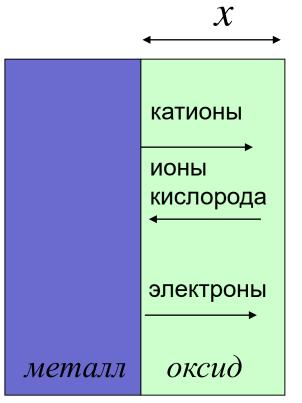
Стадии реакции:

- 1. Адсорбция молекулы кислорода на поверхности металла, перенос электрона с металла на кислород, диссоциация молекулы кислорода.
- 2. Диффузия катионов металла или ионов кислорода через слой оксида.

Лимитирующая стадия реакции:

- 1. Тонкие плёнки оксида (менее 100 нм). Скорость реакции определяется поверхностной реакцией и переносом электронов.
- 2. Толстые плёнки (более 1000 нм). Реакция определяется диффузией катионов или анионов через слой оксида. Теория Вагнера.

Основные положения теории Вагнера твёрдофазных химических реакций.


- 1. Скорость реакции лимитируется диффузией ионов через слой образовавшегося продукта.
- 2. Реакции на границах раздела фаз протекают значительно быстрее, чем процессы диффузии через слой продукта, и поэтому на границах раздела фаз устанавливается локальное термодинамическое равновесие.
- 3. Отдельные ионы движутся в реакционном слое независимо друг от друга и в любом поперечном сечении продукта сохраняется электронейтральность.

Реакции твёрдое + газ.

Окисление металлов

$$j = -C \cdot \frac{D}{k \cdot T} \cdot \frac{\partial \eta}{\partial x}$$

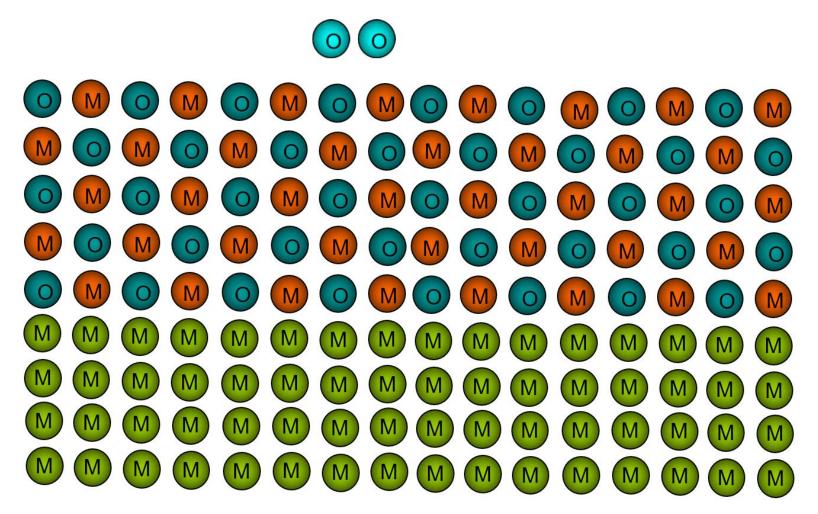
C – концентрация, D – коэффициент диффузии, k – постоянная Больцмана, T – температура, η – электрохимический потенциал.

$$\eta = \mu + q \cdot \varphi = \mu_0 + k \cdot T \cdot \ln C + q \cdot \varphi$$

 μ - хим. потенциал, q — заряд, ϕ — эл. потенциал

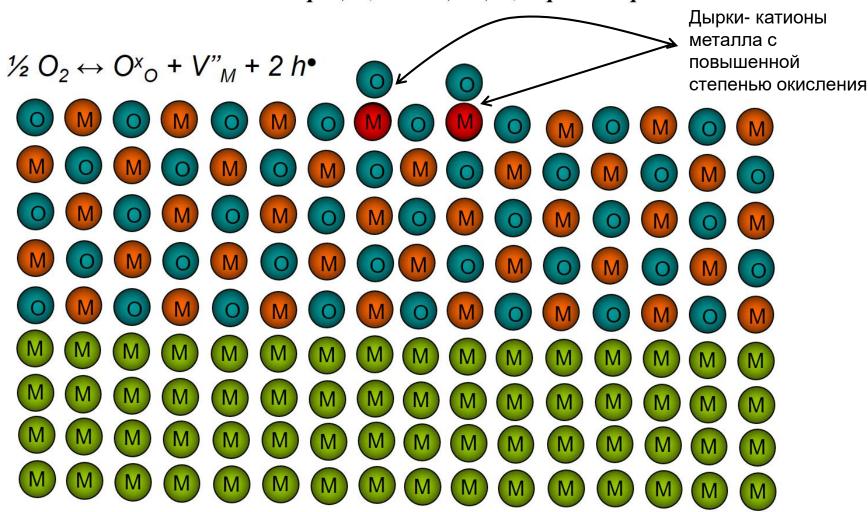
$$i_{uohob} = q_i \cdot j_{uohob} = q_e \cdot j_{электронob} = i_{электронob}$$

Скорость роста оксида:


$$\begin{split} \frac{dx}{dt} &= \Omega \cdot j_{uoH} = -\Omega \cdot (C_{\kappa} \cdot \frac{D_{\kappa}}{k \cdot T} \cdot \frac{\Delta \eta_{\kappa}}{\Delta x} + \\ C_{O} \cdot \frac{D_{O}}{k \cdot T} \cdot \frac{\Delta \eta_{O}}{\Delta x}) \end{split}$$

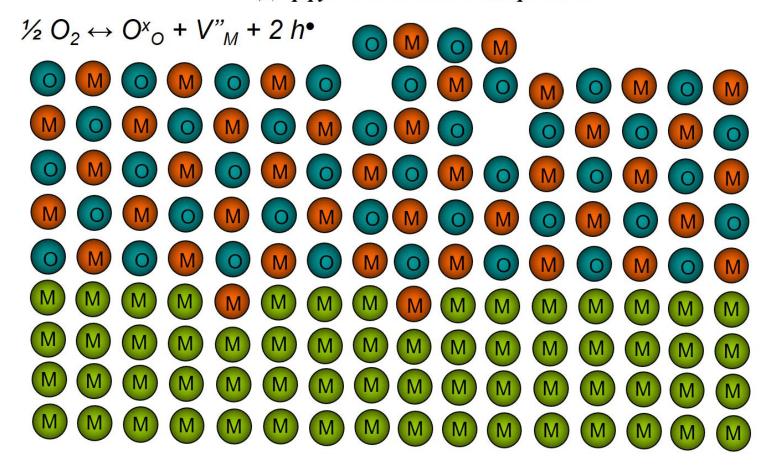
Рассмотрим два случая:

Окисление определяется диффузией металла к внешней поверхности.


Окисление определяется диффузией кислорода.

Молекула кислорода движется к поверхности металла.

Окисление определяется диффузией металла к внешней поверхности.


Адсорбция, диссоциация, перенос заряда

Кислород адсорбируется на поверхности, диссоциирует и превращается в анионы, забрав электроны у оксида. Образуются поверхностные катионные вакансии.

Окисление определяется диффузией металла к внешней поверхности.

Адсорбция, диссоциация, перенос заряда Диффузия металла к поверхности

Катионные вакансии и дырки движутся к границе металл-оксид.

Окисление определяется диффузией металла к внешней поверхности.

Адсорбция, диссоциация, перенос заряда Диффузия металла к поверхности

$$V''_M + 2h \cdot +M^x_{Me} \leftrightarrow M^x_M + V^x_{Me}$$

Атомы металла отдают электроны (поглощают дырки) и превращаются в катионы, вакансии переходят из оксида в металл. В итоге на поверхности образовался оксид, а вакансии накапливаются в металле.

Суммарное уравнение: $\frac{1}{2}O_2 + M^x_{Me} \leftrightarrow O^x_O + M^x_M + V^x_{Me}$

Окисление определяется диффузией металла к внешней поверхности

А. Оксид дефектен по Шоттки

 $t_{9} \sim 1$, $D_O << D_M$

Пример: NiO, FeO, Cu₂O

Скорость роста слоя оксида

$$\frac{dx}{dt} = \Omega \cdot j_{\kappa} = -\Omega \cdot D_{V} \cdot \frac{\Delta[V''_{M}]}{x} = k \cdot \frac{1}{x}$$

$$x^{2} = 2k \cdot t$$

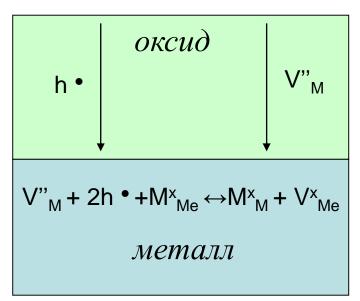
$$K_{V_M}$$
 $^{1}/_{2} O_2 \leftrightarrow O_{O}^{x} + V_{M}^{"} + 2 h^{\bullet}$

$$\frac{1}{2} O_2 \leftrightarrow O_0^x + V_M^x + 2 h^{\bullet}$$

$$h \cdot \qquad \qquad V''_{M}$$

$$V''_{M} + 2h \cdot + M^{\times}_{Me} \leftrightarrow M^{\times}_{M} + V^{\times}_{Me}$$

$$Memann$$

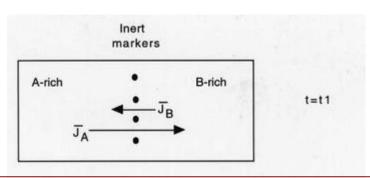

$$K_{V_M} = \frac{[V"_M] \cdot [h^{\square}]^2}{p_{O_2}^{1/2}}$$

$$[V"_{M}] = \frac{1}{2} \cdot [h^{\square}] = (\frac{K_{V_{M}}}{4})^{\frac{1}{3}} \cdot p_{O_{2}}^{\frac{1}{6}}$$

- концентрация катионных вакансий на поверхности оксида

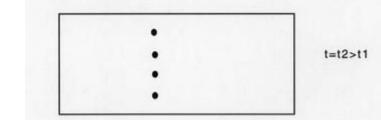
Окисление определяется диффузией металла к внешней поверхности.

$$K_{V_M}$$
 $^{1/2} O_2 \leftrightarrow O_O^x + V_M^x + 2 h^{\bullet}$

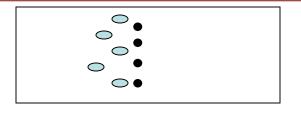

$$\begin{split} \frac{dx}{dt} &= -\Omega \cdot D_{V} \cdot (\frac{K_{M}}{4})^{\frac{1}{3}} \cdot (p_{1O_{2}}^{\frac{1}{6}} - p_{2O_{2}}^{\frac{1}{6}}) \cdot \frac{1}{x} \\ p_{1O_{2}} &>> p_{2O_{2}} \\ \frac{dx}{dt} &= -\Omega \cdot D_{V} \cdot (\frac{K_{M}}{4})^{\frac{1}{3}} \cdot p_{1O_{2}}^{\frac{1}{6}} \cdot \frac{1}{x} \\ k &= \Omega \cdot D_{V} \cdot (\frac{K_{M}}{4})^{\frac{1}{3}} \cdot p_{1O_{2}}^{\frac{1}{6}} \end{split}$$

Суммарное уравнение:

$$\frac{1}{2}O_2 + M^x_{Me} \leftrightarrow O^x_{O} + M^x_{M} + V^x_{Me}$$

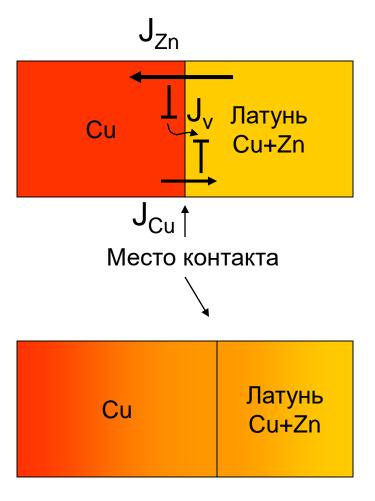

Скорость окисления определяется диффузией катионных вакансий от внешней поверхности. В результате окисления в металле накапливаются вакансии.

Эффекты, обусловленные диффузией



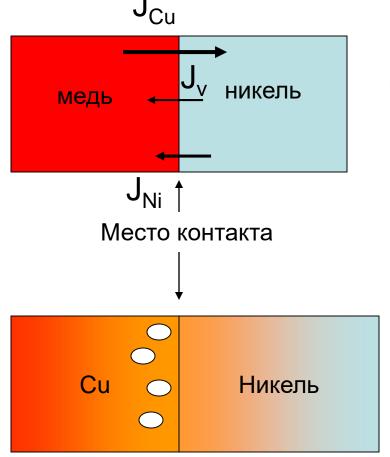
Диффузионная пара. Различие в диффузионной подвижности атомов приводит к накоплению вакансий в веществе с меньшей подвижностью.

$$J_A > J_B$$


Эффект Киркендаля — перемещение границы раздела (пример:медь-латунь) $\Delta V/V = 0$

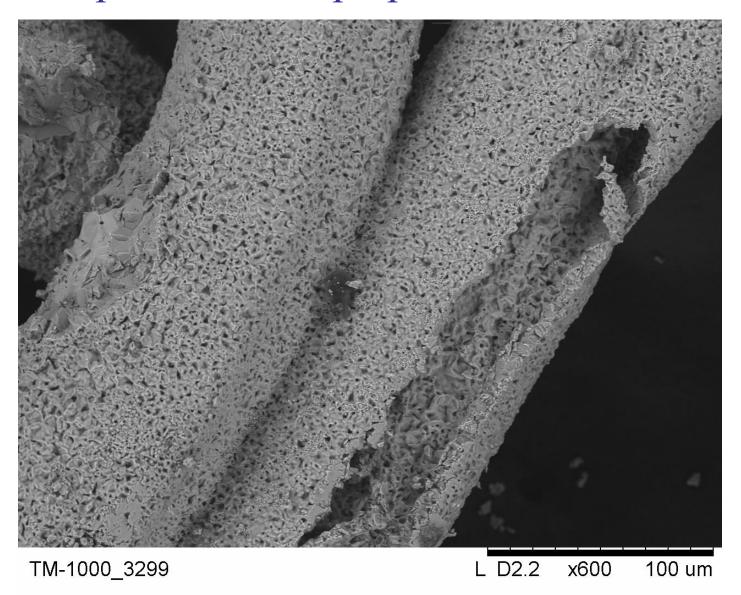
 Эффект Френкеля
 — образование

 пор (пример:никель-медь)
 $\Delta V/V > 0$


Эффект Киркендаля -перемещение границы раздела в диффузионной зоне.

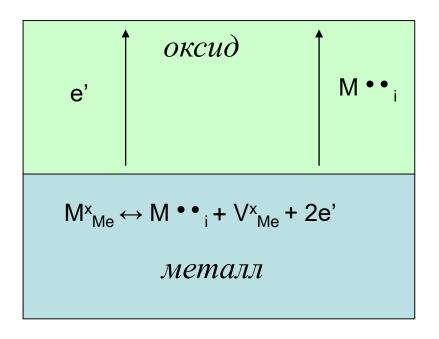
Поток вакансий = поток атомов цинка – поток атомов меди

При нагревании приведенных в контакт дисков из чистой меди и латуни (сплав меди с цинком) происходит диффузия цинка в медь и меди в латунь. Коэффициент диффузии цинка больше, коэффициента диффузии меди. Поскольку механизм диффузии вакансионный, то неравенство потоков атомов приводит к возникновению потока вакансий из меди в латунь. Вакансии рождаются и поглощаются переползающими дислокациями. Это приводит к разбору атомных плоскостей в латуни и появлению новых плоскостей в меди. В результате объём латунного диска уменьшается, а объём медного диска увеличивается. Граница раздела между дисками перемещается. Общий объём дисков практически не меняется.


Эффект Френкеля- образование пор в диффузионной зоне.

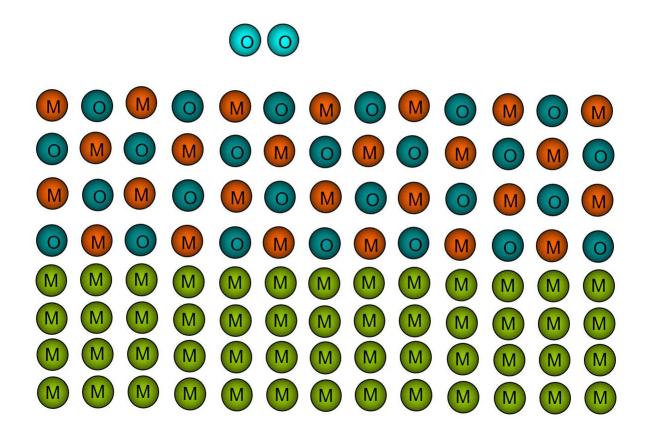
Поток вакансий = поток атомов цинка – поток атомов меди

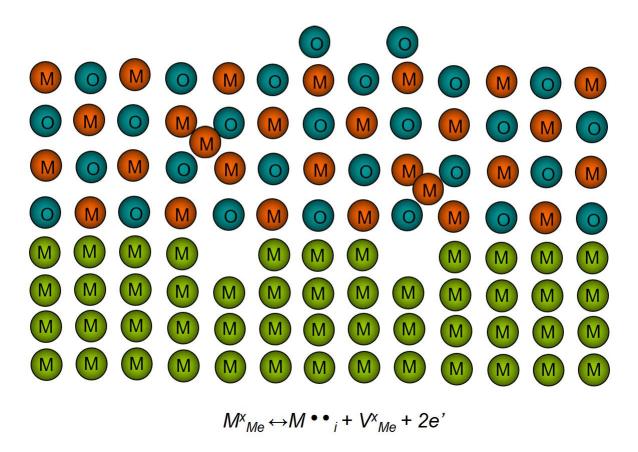
Возможен альтернативный переползанию дислокаций вариант уменьшения концентрации вакансий в диффузионной зоне. При больших концентрациях вакансий могут зарождаться поры в веществе, в которое направлен вакансионный поток. Такая ситуация реализуется в диффузионной паре никель- медь. Коэффициент диффузии никеля в меди ниже, чем меди в никеле. В результате возникает поток вакансий из никеля в медь. В медном диске зарождаются поры. Положение границы контакта между дисками не меняется. Общий объём двух дисков увеличивается на величину объёма пор.


Образование пор при окислении меди

Б. Оксид дефектен по Френкелю в катионной подрешётке $t_{2}\sim 1,\, D_{O}<< D_{M}$

Пример: ZnO, CdO


$$\frac{1}{2}O_2 + M \cdot \cdot \cdot + 2e' \leftrightarrow O_O^x + M_M^x$$


Суммарное уравнение: $\frac{1}{2}$ O₂ + $M^{x}_{Me} \leftrightarrow O^{x}_{O} + M^{x}_{M} + V^{x}_{Me}$

Скорость окисления определяется диффузией межузельных катионов к внешней поверхности. В результате окисления в металле накапливаются вакансии.

Окисление определяется диффузией металла к внешней поверхности.

Молекула кислорода движется к поверхности металла.

Кислород адсорбируется на поверхности, диссоциирует и превращается в анионы, забрав электроны у металла. Атомы металла превращаются в катионы и диффундируют по междоузлиям к поверхности. В металле образуются вакансии.

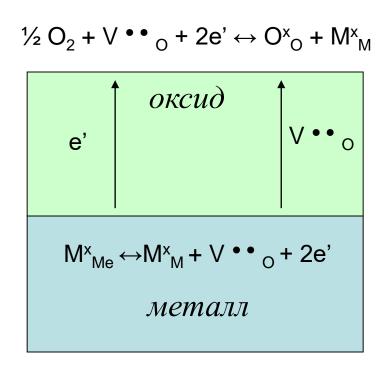
определяется диффузией межузельных катионов к внешней поверхности. Суммарное уравнение: $\frac{1}{2}O_2 + M^x_{Me} \leftrightarrow O^x_O + M^x_M + V^x_{Me}$ Окисление определяется диффузией металла к внешней поверхности.

метки

Катионы металла

Катионы металла

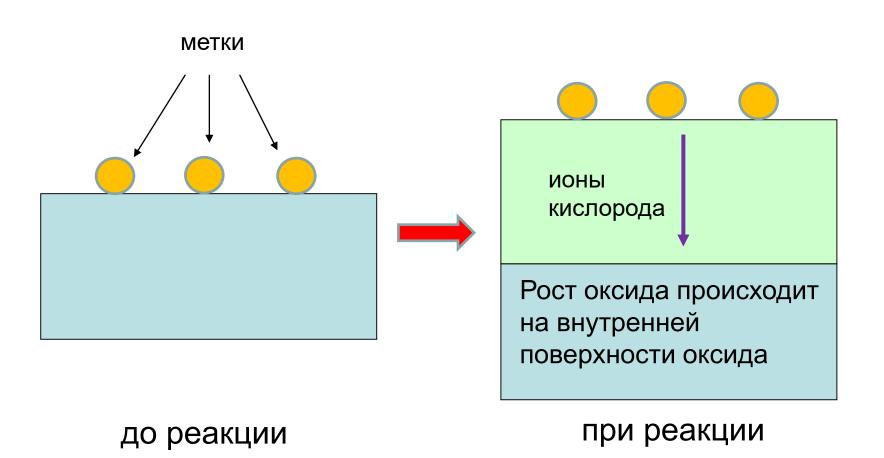
до реакции


при реакции

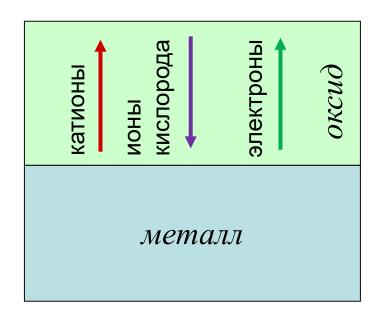
Рост оксида происходит на

Окисление определяется диффузией кислорода.

 $t_{9} \sim 1, D_{O} >> D_{M}$


Пример: ZrO_2 , CeO_2 , ThO_2

Суммарное уравнение: $\frac{1}{2} O_2 + M^x_{Me} \leftrightarrow O^x_O + M^x_M$


Скорость окисления определяется диффузией анионных вакансий к внешней поверхности.

Окисление определяется диффузией кислорода.

Реакции твёрдое + газ. Окисление металлов.

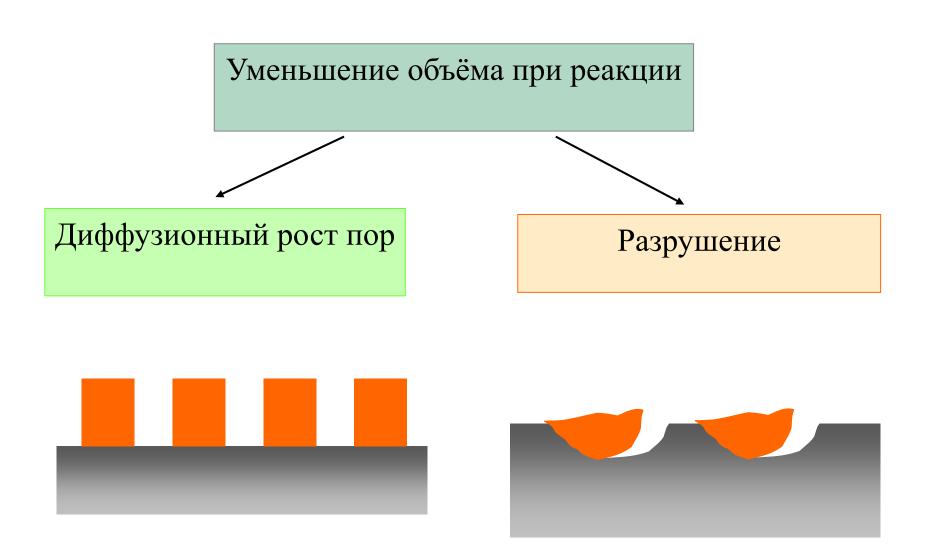
 O_2

Лимитирующая стадия реакции:

- 1. Тонкие плёнки оксида (менее 100 нм). Скорость реакции определяется поверхностной реакцией и переносом электронов.
- 2. Толстые плёнки (более 1000 нм). Реакция определяется диффузией катионов или анионов через слой оксида. Теория Вагнера.

Почему не окисляется алюминий? Al_2O_3 — стехиометрический оксид, диэлектрик с очень низкой проводимостью.

Металлы, образующие нестехиометрические оксиды с высокой проводимостью, хорошо окисляются.


Изменение объёма при реакции. Коэффициент Пиллинга-Бэдвордса.

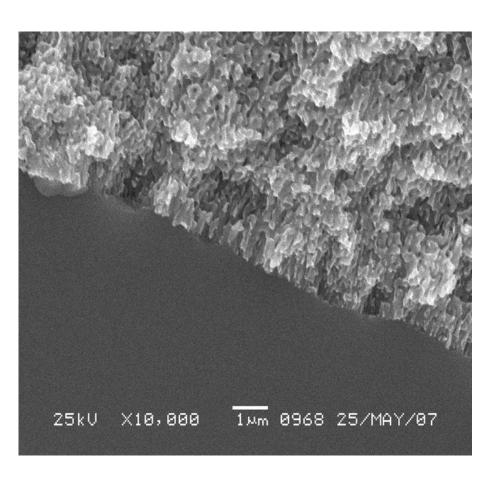
$$f=rac{V_{npodykma}}{V_{pearehma}}$$

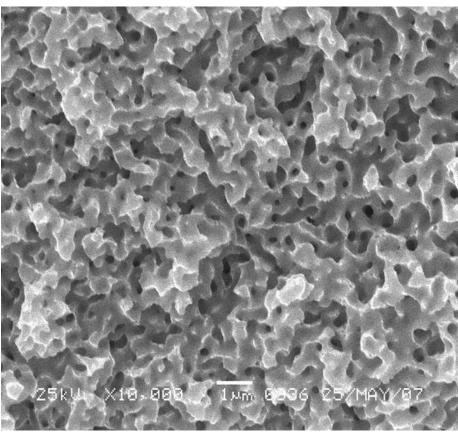
Если f > 1, то образуется сплошной слой продукта, и скорость реакции определяется диффузией в твёрдой фазе и уменьшается со временем.

Если f < 1, то образуется пористый слой продукта, скорость реакции является постоянной и не зависит от толщины слоя продукта.

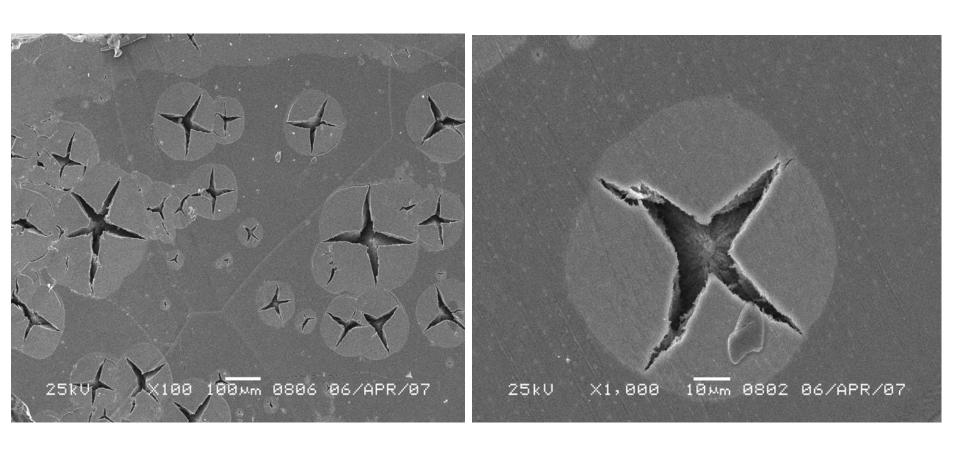
Возможные механизмы образования пористого продукта

Реакции твёрдое + газ (жидкость) A(тв) + B(газ) = C(тв)


Реакции:


 Восстановления оксидов, халькогенидов, галогенидов металлов водородом, СО, органическими восстановителями (спиртами, альдегидами).

Особенности:


- Образование пористого продукта;
- Фронт реакции движется с постоянной скоростью и не зависит от толщины продукта реакции.

Морфология продукта реакции при восстановлении Cu₂O в CO.

Автолокализация при восстановлении Cu₂O водородом или CO.

Морфология медной фазы

1. Адсорбция СО:

$$CO_{(e)} = CO_{(a\partial c)}$$

2. Реакция с кислородом оксида:

$$CO_{(a\partial c)} + O_o^x = CO_{2(a\partial c)} + V_o^x$$

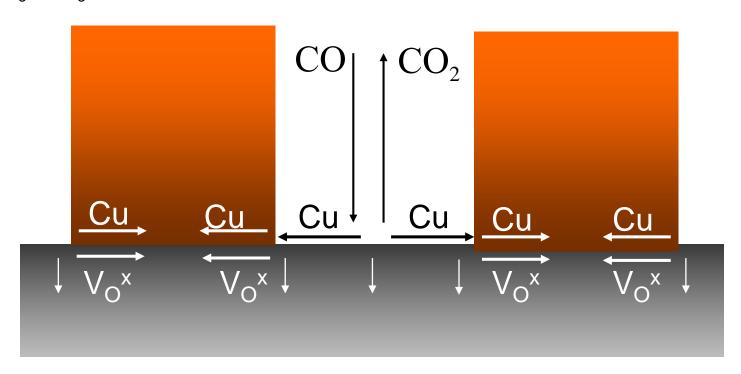
Возможна ионизация вакансии:

$$V_o^x = V_o^* + e^t$$

 $V_o^x = V_o^* + 2e^t$

3. Десорбция СО₂

$$CO_{2(a\partial c)} = CO_{2(a)}$$


4. Рост металлической фазы на поверхности:

$$V_{o (nos)}^{x} + 2Cu_{Cu (nos)}^{x} = 2Cu_{(nos)}^{0}$$

$$Cu^{0}_{(\Pi OB)} + nCu^{0}_{(Mema \Pi \Pi)} = (n+1)Cu^{0}_{(Mema \Pi \Pi)}$$

на границе раздела оксид/металл:

$$V_o^x + 2Cu_{Cu}^x + nCu_{(Memann)}^0 = (n+2)Cu_{(Memann)}^0$$

Вопросы:

- 1. Аморфные вещества. Определение, способы получения.
- 2. Функция радиального распределения аморфных веществ.
- 3. Образование стекла. Факторы, определяющие склонность к образованию стёкол.
- 4. Жидкокристаллическое состояние. Типичные примеры химических соединений, термотропные и лиотропные жидкие кристаллы.
- 5. Нематические, холестирические и смектические жидкие кристаллы.
- 6. Применение жидких кристаллов.
- 7. Реакции окисления металлов. Основные стадии. Теория Вагнера.
- 8. Особенности роста слоя оксида для случая, когда скорость процесса определяется диффузией катионов.
- 9. Эффекты Киркендаля и Френкеля. Образование пор при окислении металлов.
- 10. Особенности роста слоя оксида для случая, когда скорость процесса определяется диффузией кислорода.
- 11. Зависимость скорости окисления от времени и давления кислорода.
- 12. Коэффициент Пиллинга –Бэдвордса. Влияние значения коэффициент Пиллинга –Бэдвордса на механизм и кинетику твёрдофазной реакции.
- 13. Восстановление металлов. Основные стадии. Образование пористого металла.