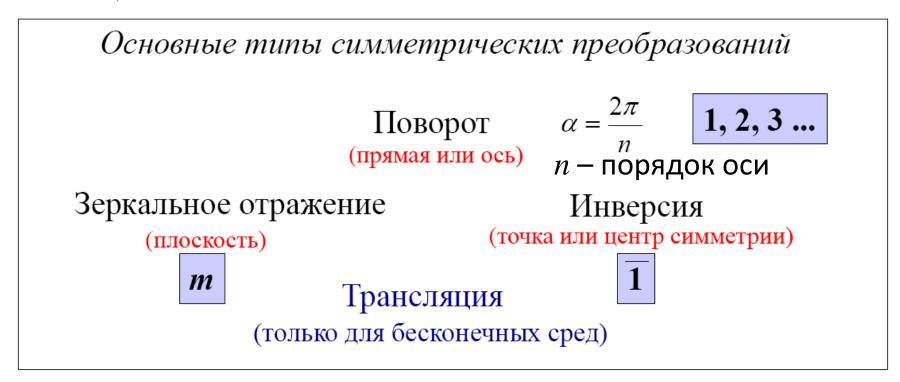
## ХИМИЯ ТВЕРДОГО ТЕЛА

Лекция 2.

Описание кристаллических структур (продолжение)

**Симметрия** тела или любого другого объекта определяется совокупностью тех преобразований, которые совмещают тело с самим собой (*самосовмещение*).

**Операция симметрии** – преобразование, при котором объект совмещается сам с собой.



Элемент симметрии — это геометрическое место точек, которые остаются неподвижными при выполнении операции симметрии.

#### Повороты









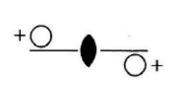


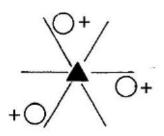
360°

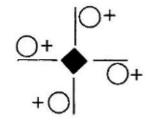
180°

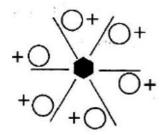
120°

90°









$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \vec{r}$$

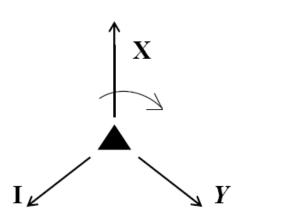
$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \vec{r} \qquad \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \vec{r}$$

$$\begin{pmatrix}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\vec{r}$$

#### Выбор системы координат

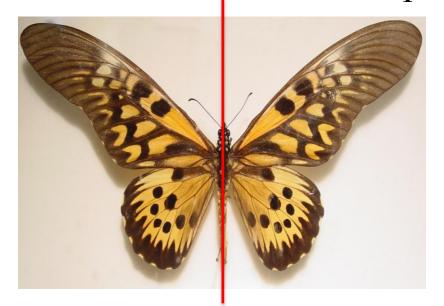
Матрицы преобразования при повороте на угол α в декартовой системе координат вокруг оси:

Пример: поворот 3

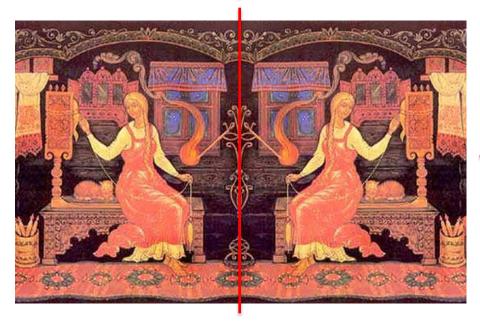


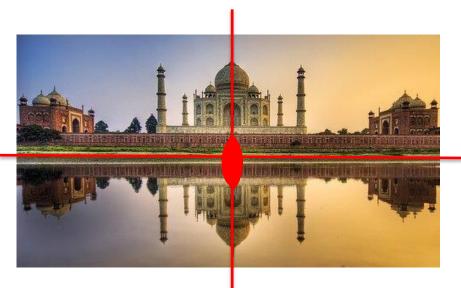
 $\mathbf{m} \| \mathbf{z}, \mathbf{m} \| \mathbf{x}$ 

#### Плоскость зеркального отражения









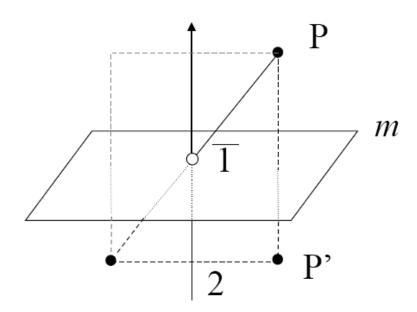
## Одновременное применение поворота и инверсии

<u>Инверсионная ось</u> симметрии

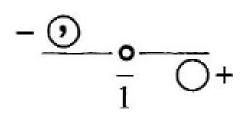
Это новый вид симметрии только для четных п

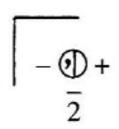
Важный частный случай:

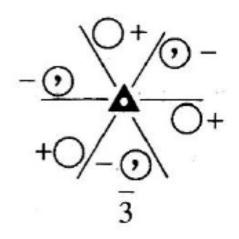
$$\overline{2} \equiv m$$

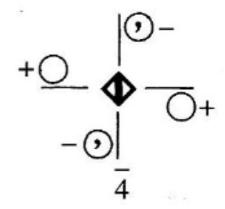


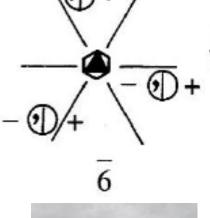
## Инверсионные повороты

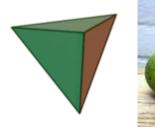




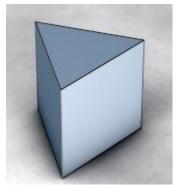












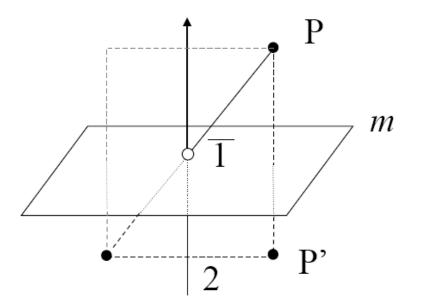
Последовательное применение двух операций симметрии будем называть *произведением* операций (или умножением).

#### Геометрические свойства:

Произведение двух поворотов вокруг осей, пересекающихся в некоторой точке, есть поворот вокруг третьей оси, проходящей через ту же точку.

Произведение двух зеркальных отражений в пересекающихся друг с другом плоскостях эквивалентно повороту, ось которого совпадает с линией пересечения плоскостей, а угол поворота равен удвоенному углу между плоскостями.

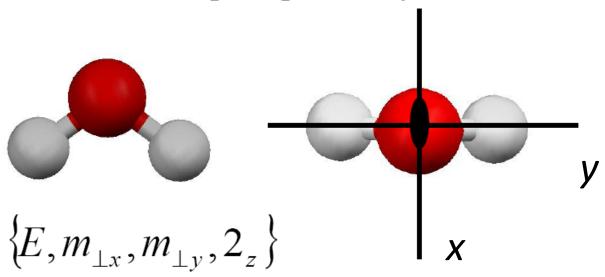
Произведение поворотной оси четного порядка и центра инверсии даёт плоскость зеркального отражения.



Ось второго порядка, перпендикулярная к ней плоскость и центр инверсии на их пересечении — взаимно зависимы. Наличие двух элементов автоматически приводит к наличию третьего.

Последовательное применение двух операций симметрии (<u>произведение</u>) – умножение матриц преобразования координат

#### Пример: молекула воды



(1) x, y, z (2) -x, y, z (3) x, -y, z (4) -x, -y, z

Совокупность всех преобразований симметрии данного тела образует группу симметрии

<u>Группа</u> — это совокупность неких операций  $g_k$ , удовлетворяющих четырем условиям:

1. Замкнутость (результат произведения любых двух операций совокупности также принадлежит данной совокупности).

$$g_i \in G,\, g_j \in G,\, g_i {\times} g_j \in G$$

2. Ассоциативность.

$$(g_i \times g_j) \times g_k = g_i \times (g_j \times g_k)$$

3. Существование единичного элемента (тождественное преобразование).

$$e\times\ g_k=g_k\times e=g_k$$

4. Существование обратного элемента.  $g_i \times g_i^{-1} = e$ 

Пусть G есть некоторая группа. Если из нее можно выделить некоторую совокупность элементов H такую, что она сама тоже составляет группу, то H называют подгруппой группы G.

Группа, для которой G является подгруппой, называется надгруппой группы G.

Если при симметрическом преобразовании хотя бы одна точка тела остается на месте, такая операция симметрии называется закрытой.

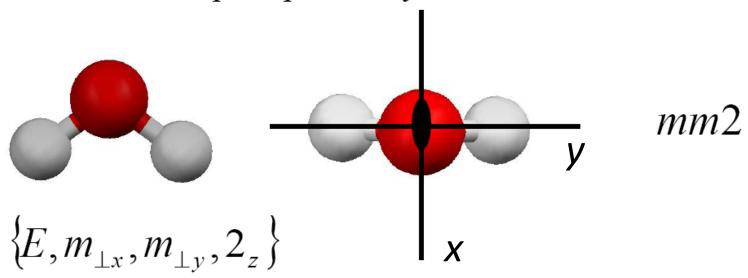
Преобразования, входящие в состав группы симметрии тела конечных размеров, должны быть такими, чтобы по крайней мере одна точка тела оставалась неподвижной при применении любого из этих преобразований

#### или

все элементы симметрии должны иметь по крайней мере одну общую точку пересечения.

Если все операции симметрии группы являются закрытыми, то такая группа называется точечной (ТГС).

#### Пример: молекула воды



(1) 
$$x$$
,  $y$ ,  $z$  (2) - $x$ ,  $y$ ,  $z$  (3)  $x$ , - $y$ ,  $z$  (4) - $x$ , - $y$ ,  $z$ 

Элементы группы, которые являются достаточными для определения группы, называются **генераторами группы.** 

генераторы:  $m_{\perp x}$  и  $2_z$ ,  $m_{\perp x}$  и  $m_{\perp y}$ ,  $m_{\perp y}$  и  $2_z$ 

подгруппы:  $\{E\}$ ,  $\{E,\,m_{\perp x}\}$ ,  $\{E,\,m_{\perp y}\}$ ,  $\{E,\,2_z\}$ 

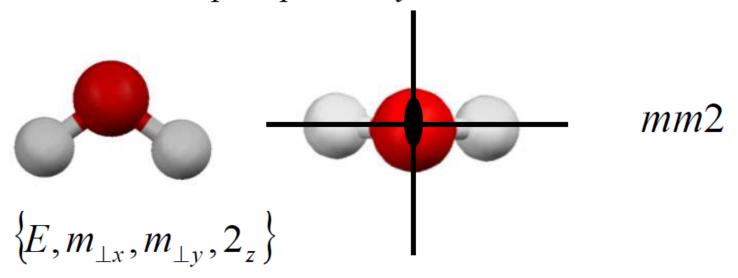
Если мы действуем всеми операциями симметрии на какуюлибо произвольную точку, то мы получаем <u>правильную систему</u> <u>точек</u> (ПСТ) выбранной позиции.

Количество полученных таким образом точек называется кратностью выбранной позиции

<u>Точка общего положения</u> – не лежит ни на каком элементе симметрии.

<u>Точка частного положения</u> — лежит на каком-либо элементе симметрии. Симметрия точки частного положения определяется теми элементами симметрии, которые проходят через эту точку.

#### Пример: молекула воды



#### Кратность позиции Симметрия позиции

- $2 \quad c \quad m \qquad x, \ 0, \ z \qquad -x, \ 0, \ z$

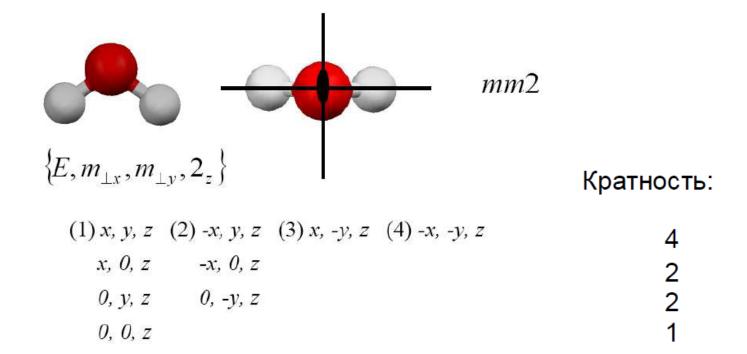
Точки частного положения

- a mm2 0, 0, z

## Описание структуры:

- Группа симметрии
- Заселенность позиций правильной системы точек (координаты точек симметрически независимой части структуры, asymmetric unit)
- Мера масштаба (для получения расстояний между точками)

### Пример: Структура молекулы воды



O: 0, 0, z

H: 0, y, z

Брутто-формула: 2Н: 1О

## Точечные группы симметрии

#### Молекулы

- Для описания симметрии достаточно ТГС;
- Нет ограничений на порядок поворотных осей и, следовательно, на число возможных ТГС

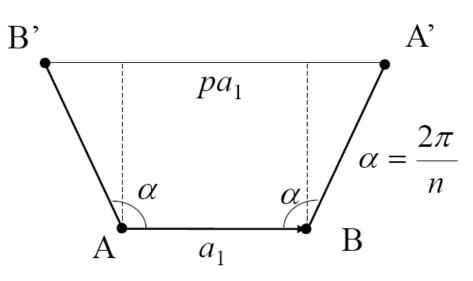
#### Кристаллы

- Для описания симметрии недостаточно ТГС;
- Ограничения на порядок поворотных осей, совместимых с трансляционной симметрией (2, 3, 4, 6) и, следовательно, на число возможных ТГС (32 для трехмерных структур)

Бесконечная кристаллическая решетка может быть инвариантна лишь относительно следующих точечных операций симметрии:

- инверсии;
- отражения в плоскости;
- поворотов 2, 3, 4 и 6 порядков;
- операций, являющихся сочетаниями перечисленных.

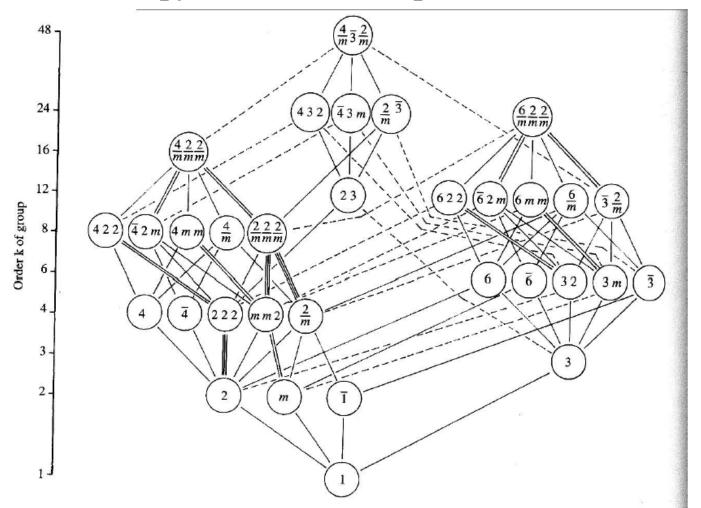
Доказательство Нигли:



А и В – следы двух ближайших осей вращения.

вращения. 
$$pa_1 = a_1 + 2a_1 \sin\left(\alpha - \frac{\pi}{2}\right)$$
 
$$\cos \alpha = \frac{1-p}{2} \qquad p = 3 \qquad 2$$
 
$$p = 2 \qquad 3$$
 
$$p = 1 \qquad 4$$
 
$$p = 0 \qquad 6$$
 
$$p = -1 \qquad 1$$

Точечные группы симметрии, которые содержат только совместимые с трансляционной симметрией закрытые операции симметрии, называют *кристаллографическими точечными группами симметрии*.



Таких точечных групп 32.

#### Трансляционная симметрия

Одномерная

Бесконечные цепи (бордюры)

$$\vec{T} = n\vec{a}$$

$$n \in \mathbb{Z}$$

Двумерная

Бесконечные слои

$$T = u\vec{a} + v\vec{b}$$
  $u, v \in Z$ 

$$u, v \in Z$$

Трехмерная

Кристаллические структуры

$$\vec{T} = u\vec{a} + v\vec{b} + w\vec{c}$$
  $u, v, w \in Z$ 

$$u, v, w \in Z$$

Множество векторов  $\vec{T}$  образуют группу, если в качестве умножения принять геометрическое сложение векторов.

$$e = \vec{0}$$

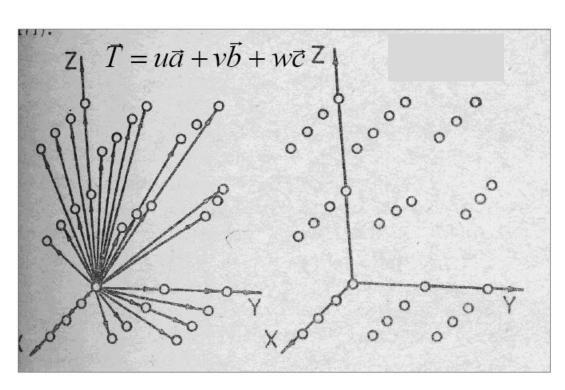
Обратный элемент:  $\vec{t}^{-1} = -\vec{t}$ 

$$\vec{t}^{-1} = -\vec{t}$$

Множество векторов трансляций, совмещающих структуру саму с собой, образуют группу трансляций (ГТ) данной структуры.

Число элементов группы трансляции бесконечно. Генераторами ГТ являются вектора элементарных трансляций.

Правильную систему точек группы трансляций называют *решеткой Бравэ* кристаллической структуры.



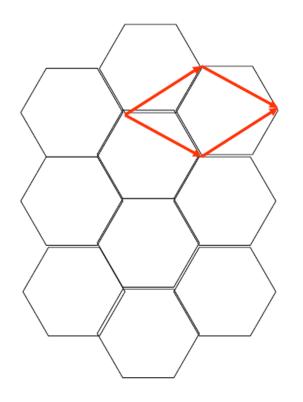
Точки решетки Бравэ имеют абсолютно одинаковый пространственный порядок и ориентацию, независимо от того, какую точку мы принимаем за исходную.

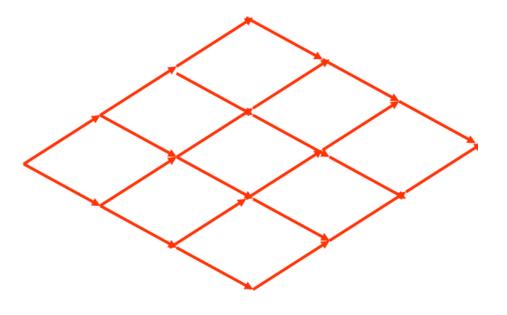
Узел решетки Бравэ – математическая абстракция. В узлы решетки можно поместить материальные точки или одинаковые шарики.

$$\vec{T} = u\vec{a} + v\vec{b} + w\vec{c}$$

u, v, w — любые целые числа

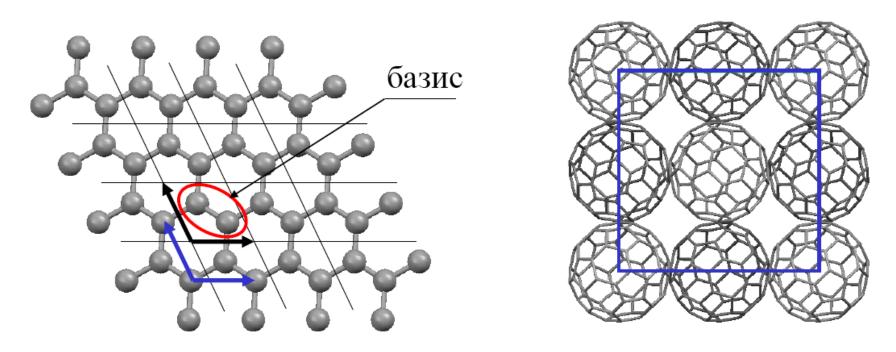
#### Структура





Решетка Бравэ

Фрагмент структуры, из которого можно получить всю структуру, подвергнув фрагмент трансляциям решетки Бравэ, называется *базисом*.



Для того, чтобы однозначно описать кристаллическую структуру необходимо и достаточно указать решетку Бравэ и координаты всех точек базиса в системе координат, связянной с решеткой Бравэ.

Координаты базиса для примера слева:

а) 1: (0,0); 2: (2/3,1/3); б) 1: (1/3,2/3); 2: (2/3,1/3) — разный выбор начала координат

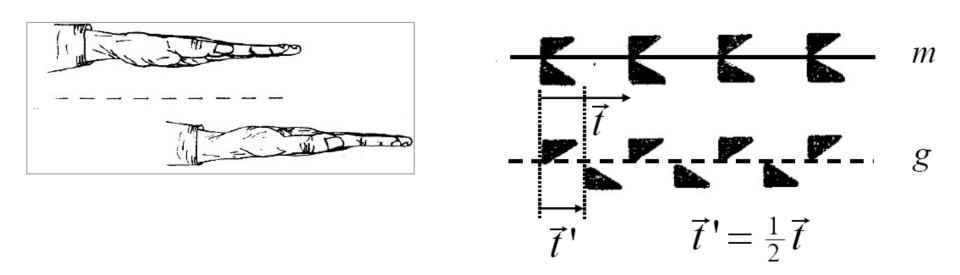
Сочетание трансляции с плоскостями и осями симметрии дает новые виды симметрии – плоскости скользящего отражения и винтовые оси симметрии

Операции симметрии, которые не оставляют неподвижными ни одной точки пространства, называют *открытыми операциями симметрии*.

# Открытые операции симметрии: трансляция, скользящее отражение, винтовой поворот

#### Плоскости скользящего отражения

Скользящее отражение — это операция симметрии, включающая зеркальное отражение в плоскости с одновременной трансляцией в направлении, параллельном данной плоскости.



 $\vec{t}'$  - вектор частичной трансляции.

Вектор частичной трансляции

$$\frac{1}{2}\vec{a}$$

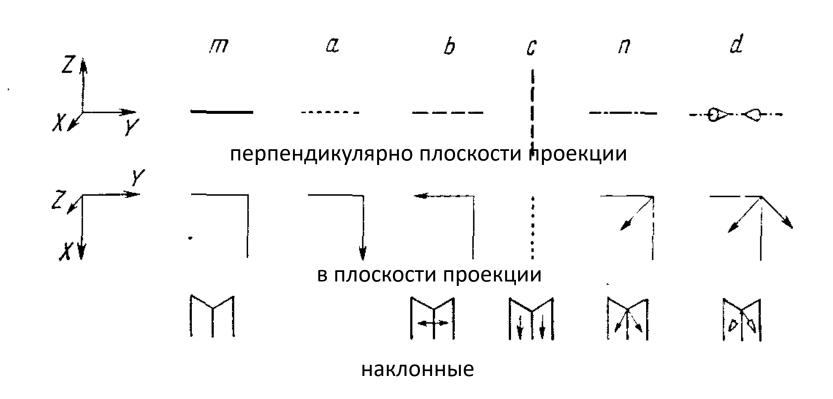
$$a \perp y$$

$$\frac{1}{2}\vec{c}$$

$$\frac{1}{2}(\vec{b}+\vec{c})$$
 или  $\frac{1}{2}(\vec{a}+\vec{b})$  или  $\frac{1}{2}(\vec{c}+\vec{a})$ 

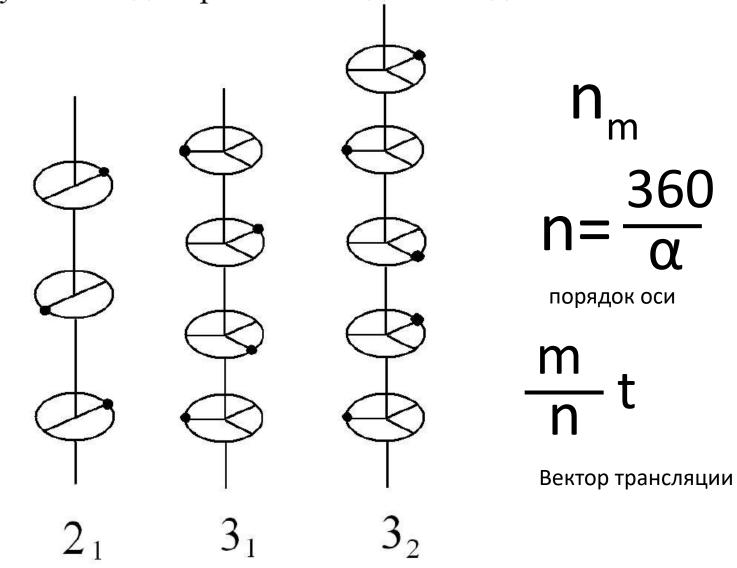
$$\frac{d}{4}$$
 (алмазные)  $\frac{1}{4}(\vec{b} + \vec{c})$  или  $\frac{1}{4}(\vec{a} + \vec{b})$  или  $\frac{1}{4}(\vec{c} + \vec{a})$ 

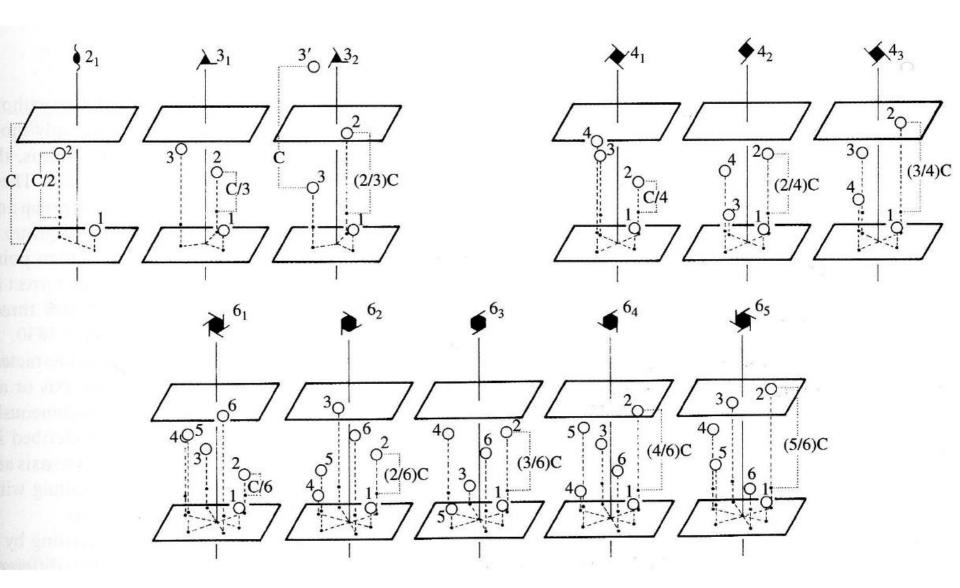
#### Изображение плоскостей симметрии



#### Винтовые оси симметрии

**Винтовой поворот** – это операция симметрии, включающая поворот вокруг оси с одновременным сдвигом вдоль той же оси.





#### Изображение осей симметрии

перпендикулярно плоскости проекции



#### Матричное представление

$$x, y, z, \rightarrow x', y', z'$$

$$x' = r_{11}x + r_{12}y + r_{13}z + t_{1};$$

$$y' = r_{21}x + r_{22}y + r_{23}z + t_{2};$$

$$z' = r_{31}x + r_{32}y + r_{33}z + t_{3}$$

$$det R = \pm 1$$

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} t_1 \\ t_2 \\ t_3 \end{pmatrix}$$

Операции симметрии 1-го рода:  $\det R = 1$ 

Операции симметрии 2-го рода:  $\det R = -1$ 

Геометрическое построение ↔ матричный вид операций изоморфны

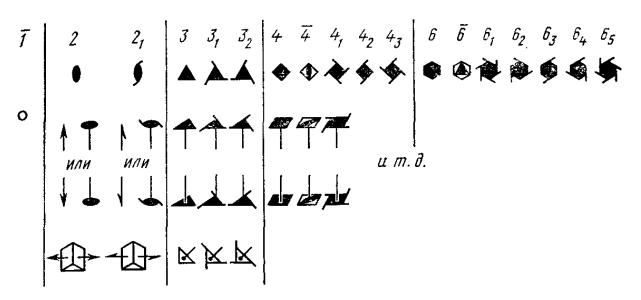
$$\vec{r}' = R\vec{r} + \vec{t}$$
Винтовой поворот  $2_1$  вдоль оси  $z$ 

$$\vec{r}' = R\vec{r} + \vec{t}$$

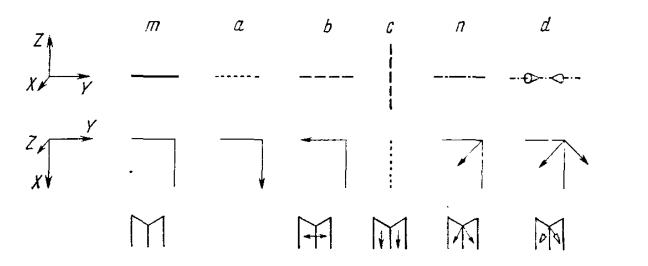
$$\vec{r}' = R\vec{r} + \vec{t}$$
Винтовой поворот  $2_1$  вдоль оси  $z$ 

$$\vec{r}' = R\vec{r} + \vec{t}$$

#### Изображение осей симметрии



#### Изображение плоскостей симметрии



#### Вопросы:

- 1. Чем отличаются закрытые операции симметрии от открытых? Приведите примеры закрытых операций симметрии. Какие из них совместимы с трансляциями?
- 2. Дайте определения следующим понятиям: правильная система точек, точка общего и частного положения, кратность позиции.
- 3. Что такое генератор группы? Что такое подгруппа? Приведите генераторы ТГС молекулы воды.
- 4. Чем отличаются группы симметрии молекул от групп симметрии кристаллов?
- 5. Что такое решетка Бравэ? Что такое группа Бравэ?
- 6. Конечно или бесконечно число различных ТГС а) молекул, б) кристаллов. Почему?