П.В. Черников

ОДНА ХАРАКТЕРИЗАЦИЯ АБСОЛЮТНЫХ РЕТРАКТОВ И ЕЕ ПРИЛОЖЕНИЯ

Доказано равенство $ANR(\mathfrak{M}) \cap AR_{\epsilon}(\mathfrak{M}) = AR(\mathfrak{M})$. Получены некоторые утверждения в направлении решения следующей задачи: если X — метрический компакт, то верно ли, что из условия $\exp_2 X \in AR$ следует, что $X \in AR_{\epsilon}(\mathfrak{M})$?

Ключевые слова: абсолютный ретракт, полиэдр, связность, функтор ехр₂.

§ 1. Об абсолютных ретрактах

Далее через $AR(ANR)(\mathfrak{M})$ обозначим совокупность всех абсолютных (окрестностных) ретрактов в классе \mathfrak{M} метрических пространств [1]. В [2] дано определение в классе \mathfrak{M} понятия абсолютного ε -ретракта. Сформулируем это определение.

Определение 1. Замкнутое подмножество A метрического пространства X называется ε -ретрактом X, если для всякого $\delta > 0$ существует такое непрерывное отображение $r_{\delta}: X \to A$, что $\rho(x, r_{\delta}(x)) \leq \delta$ для всех $x \in A$.

Определение 2. Метрическое пространство Y называется абсолютным ε -ретрактом, если всякое замкнутое подмножество A любого метрического пространства X, изометричное Y, является ε -ретрактом X.

Совокупность всех абсолютных ε -ретрактов обозначим через $AR_{\varepsilon}(\mathfrak{M})$. Потребуется

Утверждение 1 [2]. Для того чтобы метрическое пространство Y было абсолютным ε -ретрактом, необходимо и достаточно, чтобы для всякого непрерывного отображения $f:A\to Y$ замкнутого подмножества A любого метрического пространства X в Y и для любого $\delta>0$ существовало такое непрерывное отображение, $f_\delta:X\to Y$, что $\rho(f(x),f_\delta(x))\leq \delta$ для всех $x\in A$.

При доказательстве утверждения используется вложение Куратовского, которое является изометрическим отображением.

Теорема 1. Метрическое пространство Y принадлежит классу $ANR(\mathfrak{M}) \cap AR_{\varepsilon}(\mathfrak{M})$ в том и только том случае, когда $Y \in AR(\mathfrak{M})$.

ДОКАЗАТЕЛЬСТВО. Если $Y \in AR(\mathfrak{M})$, то очевидно, что $Y \in ANR(\mathfrak{M}) \cap AR_{\varepsilon}(\mathfrak{M})$. Пусть $Y \in ANR(\mathfrak{M}) \cap AR_{\varepsilon}(\mathfrak{M})$. Докажем, что тогда $Y \in AR(\mathfrak{M})$. Поскольку $Y \in ANR(\mathfrak{M})$, то существует CW-комплекс K, гомотопически эквивалентный Y.

Покажем, что $\pi_i(K) = 0$, $i \ge 0$. Обозначим через S^n n-мерную сферу, через E^{n+1} — соответствующий (n+1)-мерный шар, $n \ge 0$. Пусть $f: S^n \to K$ — непрерывное отображение. Найдутся такие непрерывные отображения $\varphi: Y \to K$, $\psi: K \to Y$, что $\varphi \psi \simeq id_k$.

Рассмотрим отображение $\psi f: S^n \to Y$. Существует непрерывное отображение $f_k:E^{n+1}\to Y$ такое, что

$$\rho(\psi f(x), f_k(x)) \le \frac{1}{k} \tag{1}$$

для всех
$$x \in S^n(k=1,2,\ldots)$$
. Положим
$$A = \psi f(S^n) \cup \Big(\bigcup_{k=1}^{\infty} f_k(S^n)\Big). \tag{2}$$

Нетрудно видеть, что множество A компактно в Y. Пусть $A_0 = \varphi(A), A_0$ — компактное подмножество K. Найдется такой конечный CW-комплекс $K_0 \subset K$, что $A_0 \subset K_0$. Компакт K_0 метризуем и принадлежит ANR.

Существует такое $\delta > 0$, что если g_1, g_2 — два непрерывных отображения некоторого топологического пространства \widetilde{X} в K_0 , удовлетворяющие условию $\rho(g_1(x),g_2(x)) \leq \delta$ для всех $x \in \widetilde{X}$, то g_1, g_2 гомотопны на \widetilde{X} . Можно выбрать такое $\varepsilon_0 > 0$, что если $\rho(x, y) \le \varepsilon_0$, $x,y\in A$, то $\rho(\varphi(x),\varphi(y))\leq \delta$. Найдется номер N, для которого $\rho(\psi f(x),f_N(x))\leq \varepsilon_0$ для всех $x \in S^n$. Следовательно,

$$\rho(\varphi\psi f(x), \varphi f_N(x)) \le \delta \tag{3}$$

для всех $x\in S^n$, и поэтому $\varphi\psi f\simeq \varphi f_N|S^n$, т.е. $f\simeq \varphi f_N|S^n$. Так как (E^{n+1},S^n) — пара Борсука, то существует непрерывное отображение $h: E^{n+1} \to K$ такое, что $h|S^n = f$. Отсюда следует, что все гомотопические группы $\pi_i(K)$, $i \geq 0$, тривиальны. По теореме Уайтхеда K — стягиваемый CW-комплекс. По теореме Борсука [1] стягиваемый абсолютный окрестностный ретракт является абсолютным ретрактом и, следовательно, $Y \in AR(\mathfrak{M})$. Теорема доказана.

§ 2. Применения

Через AR(ANR) обозначим совокупность всех компактных метрических абсолютных (окрестностных) ретрактов. В [3] введено понятие абсолютного ε -ретракта в классе метрических компактов. Сформулируем соответствующее определение.

Определение 3. Компактное метрическое пространство У называется абсолютным ε -ретрактом, если всякое замкнутое подмножество A любого компактного метрического пространства X, гомеоморфное Y, является ε -ретрактом X.

Совокупность всех таких абсолютных ε -ретрактов обозначим, следуя [3], через $\varepsilon - AR$. Очевидно, что $AR \subset \varepsilon - AR$, причем это включение строгое. Отметим, что компактное метрическое пространство Y принадлежит $\varepsilon-AR$ тогда и только тогда, когда $Y \in AR_{\varepsilon}(\mathfrak{M})$ [4].

Л.Б. Шапиро поставил в [5]

Вопрос 1. Если X — метрический компакт, то верно ли, что из условия $\exp_2 X \in AR$ следует, что $X \in AR$?

В [6] дан отрицательный ответ на этот вопрос. В связи с этим представляется естественным следующий вариант вопроса Шапиро.

Вопрос 2. Если X — метрический компакт, то верно ли, что из условия $\exp_2 X \in AR$ следует, что $X \in \varepsilon - AR$?

В данной работе доказываются некоторые утверждения в направлении решения вопроса 2 для пространств $R^k(X \subset R^k)$. В [6] установлено, что если K — ациклический компактный полиэдр, то $\exp_2 X \in AR$.

Известно, что в пространстве R^6 содержится ациклический не стягиваемый компактный полиэдр K_0 . Согласно приведенному примеру $\exp_2 K_0 \in AR$. Применяя теорему 1, получаем, что $K_0 \notin \varepsilon - AR$. Таким образом, для всех пространств R^k , $k \geq 6$ ответ на вопрос 2 отрицательный.

В [1. С. 249] указано, что в R^3 нет ациклических нестягиваемых компактных полиэдров. Для пространств R^4, R^5 вопрос о существований в них таких полиэдров, повидимому, открыт.

В [1. С. 249] сформулирована

Проблема. Существует ли ациклический нестягиваемый ANR-компакт X_0 в R^3 ?

Покажем, что верна

Теорема 2. Если X — ациклический ANR-компакт, то $\exp_2 X \in AR$.

ДОКАЗАТЕЛЬСТВО. Рассмотрим произведение $X \times Q$. Очевидно, что пространства $\exp_2 X$ и $\exp_2(X \times Q)$ гомотопически эквивалентны. По теореме Яворовского [8] имеем $\exp_2 X \in ANR$. Поэтому для доказательства теоремы достаточно доказать стягиваемость пространства $\exp_2(X \times Q)$. Согласно ANR-теореме Эдвардса [7] пространство $X \times Q$ является Q-многообразием. По триангуляционной теореме Чепмэна [7] найдется компактный полиэдр P такой, что пространства $X \times Q$ и $P \times Q$ гомеоморфны. Согласно приведенному примеру $\exp_2 P \in AR$. Следовательно, $\exp_2 X$ — стягиваемый ANR-компакт и, значит, $\exp_2 X \in AR$. Теорема доказана.

Из теорем 1, 2 следует, что если проблема Борсука имеет положительное решение, то для пространств R^3 , R^4 , R^5 ответ на вопрос 2, а значит, и на вопрос 1, отрицательный.

Таким образом, мы видим, что для пространств R^k , $k \ge 6$, ответ на вопрос 2 отрицательный; если проблема Борсука имеет положительное решение, то для пространств R^3, R^4, R^5 ответ на этот вопрос также отрицательный; в случае плоскости R^2 ответ неизвестен.

Автор благодарен профессору В. И. Кузьминову за внимание к работе.

Список литературы

- 1. Борсук К. Теория ретрактов. М.: Мир, 1971.
- 2. *Черников П. В.* Об одной характеризации абсолютных ретрактов // Сиб. мат. журн. 1992. Т. 33, № 2. С. 215–217.
- 3. $Noguchi\ H.$ A Generalization of Absolute Neighborhood Retracts // Köolai Math. Sem. Rep. 1953. Vol. 5. No. 1. P. 20–22.
- 4. Черников П. В. Метрические пространства и продолжение отображений // Сиб. мат. журн. 1986. Т. 27, № 6. С. 210–215.

- 5. Шапиро Л. Б. О некоторых свойствах функторов экспоненциального типа // Материалы IV Тираспольского симпозиума по общей топологии и ее приложениям. Кишинев: Штиинца, 1979. С. 163-164.
- 6. Дранишников А. Н. Абсолютные F-значные ретракты и пространства функций в топологии поточечной сходимости // Сиб. мат. журн. 1986. Т. 27, № 3. С. 74–86.
 - 7. Чепмэн Т. Лекции о Q-многообразиях. М.: Мир, 1981.
- 8. Jaworowski J. W. Symmetric Products of ANR's // Math. Ann. 1971. Bd. 152. No. 3. S. 173–176.

Материал поступил в редколлегию 12.09.2008

Адрес автора

ЧЕРНИКОВ Павел Васильевич РОССИЯ, 630090, Новосибирск ул. Пирогова, 2, Новосибирский государственный университет, к. 403

тел.: (383) 363-41-34

e-mail: vestnikmath@nsu.ru