Институт автоматики и электрометрии СО РАН пр. Акад. Коптюга, 1, Новосибирск, 630090, Россия E-mail: vkazakov@phys.nsu.ru

СИСТЕМА ОРГАНИЗАЦИИ ЭЛЕКТРОННЫХ ЛЕКЦИЙ С ВИДЕОКОНФЕРЕНЦСВЯЗЬЮ И РАЗНОРОДНЫМ ИНТЕРАКТИВНЫМ ДЕМОНСТРАЦИОННЫМ РЯДОМ

Ввеление

В последнее время часто бывает необходимо организовывать общение людей на расстоянии. Это позволяет сэкономить денежные средства и время в таких случаях, как, например, ежедневные совещания руководителей компании и глав ее филиалов. Кроме того, общение на расстоянии незаменимо в случае, если собрать всех участников в нужном месте в нужное время невозможно, например, для срочной консультации у специалиста.

В образовательном процессе также часто приходится отказываться от живого общения, и зачастую было бы удобнее передать учебный материал дистанционно, чем собирать всех слушателей и лектора в одном месте. Это в основном относится к заочным формам обучения, в том числе к дистанционному образованию. Однако такой подход имеет место и в очном образовании, так как в вузе может не оказаться достаточно хорошего лектора по тому или иному предмету или специалиста в какой-либо узкой области.

Видеосвязь обеспечивает лучшее восприятие информации по сравнению со всеми другими видами удаленных коммуникаций, даже если их использовать одновременно. Возможность в процессе разговора следить за жестикуляцией и мимикой собеседника резко повышает КПД передачи информации. Еще более эффективной видеосвязь получается при дополнении ее демонстрационными материалами¹. Из всех способов организации видеосвязи самыми доступными и удобными являются видеоконференции на основе IP-сетей. В настоящее время создано множество таких систем, в том числе и свободно распространяемых, позволяющих решать общие задачи удаленного общения. Однако зачастую в связи со спецификой передаваемой информации общие решения становятся неприемлемыми. Для удаленной консультации врачом пациента нужны средства осмотра и передачи жизненных показателей, для удаленных деловых совещаний необходима возможность совместной работы над документами.

Уникальный подход нужен и для дистанционных лекций. Помимо видеосвязи, система чтения удаленных лекций должна обеспечивать возможность представлять демонстрационный ряд, а именно:

- различные типы демонстраций тексты, научную графику, видеозаписи экспериментов, математические формулы, трехмерные модели и т. д.;
- инструменты управления демонстрациями в процессе чтения лекции, например, позиционирование видеозаписи эксперимента или вращение трехмерного графика.

Кроме того, лектору необходима обратная связь с аудиторией: видео-общение со слушателем, задавшим вопрос, интерактивное тестирование, форум и т. п.

В настоящее время не существует систем, ориентированных на организацию дистанционного проведения лекций, совмещающих видеоконференцсвязь и возможность сопровождения лекции демонстрацией учебных материалов различных типов и их интерактивным управлением. Цель настоящей работы заключается в исследовании и разработке способов созда-

¹ Россия осваивает видеоконференцсвязь: http://info.tatcenter.ru/society/10765.htm.

54 В. В. Казаков

ния средств проведения дистанционных лекций в виде видеоконференций, сопровождаемых сложным интерактивным демонстрационным рядом, с возможностью сохранения и дальнейшего использования.

Практическая ценность работы состоит в создании мультимедиа-лектория — системы для ведения лекционного процесса, обладающей набором средств, существенно повышающих эффективность дистанционного чтения лекции. Такая система может быть использована в заочном образовании, лекциях ведущих специалистов узких областей науки для небольшого числа разбросанных по всему миру пользователей и в других случаях

В процессе работы был проведен анализ существующих систем видеоконференций (Microsoft Netmeeting², Microsoft Windows Messenger³, Microsoft ConferenceXP⁴, Skype⁵). Анализ показал что стандартные системы видеоконференций не могут эффективно выполнять задачу удаленного образования в основном вследствие отсутствия средств эффективной организации и представления учебного демонстрационного материала.

Основные требования к системе

В результате проведенного анализа систем, которые могут быть использованы для дистанционного чтения лекций, был выявлен ряд требований к мультимедиа-лекторию. Во-первых, такая система должна предоставлять видеосвязь со стороны лектора. Согласно зарубежным исследованиям, при телефонном разговоре воспринимается только десятая часть транслируемой абонентом информации. Использование телефонной связи в совокупности с факсимильной позволяет увеличить объем эффективно усваиваемой информации примерно до 25 %. В случае же, когда есть возможность в процессе разговора следить за жестикуляцией и мимикой собеседника, КПД передачи информации достигает 60 %, что уже приближается к эффективности «живого» общения. Дело в том, что помимо речи люди при общении обладают мимикой, жестикуляцией, принимают позы, это происходит не осознанно. Мимика и жесты сосредотачивают собеседника, привлекают его внимание, акцентируют какие-либо детали разговора и передают другую дополнительную информацию 6.

Во-вторых, при чтении лекции лектору необходимо оперировать некоторым демонстрационным рядом. Демонстрационный ряд должен предоставлять широкий спектр типов демонстраций, не ограничивающий лектора в возможности сделать лекцию максимально интересной и эффективной. Демонстрации должны предоставлять различные динамические и интерактивные элементы, удовлетворяя желание лектора управлять демонстрациями во время чтения лекции. Для управления демонстрациями лектору предоставляются специальные инструменты.

В-третьих, создание демонстрационного ряда должно осуществляться лектором, который может не иметь особых навыков работы с компьютером. Таким образом, для реализации системы удаленного чтения лекций необходимо разработать систему создания, редактирования и хранения демонстрационного ряда. Подобная система должна обладать интуитивно понятным интерфейсом создания и редактирования демонстраций.

В-четвертых, для повышения эффективности лекции нужно реализовать различные пути обратной связи лектора с аудиторией. Лектору необходимо проверять знания слушателей при чтении лекции с помощью различных тестов, чтобы обратить внимание отдельных слушателей на проблемы в понимании материала или вовремя скорректировать курс лекции при плохом усвоении материала значительной части слушателей. Система тестирования должна быть развитой и предоставлять множество различных типов тестов. Слушателям необходима возможность в процессе и после лекции задавать вопрос лектору для уточнения каких-либо деталей материала. Также нужны инструменты общения слушателей друг с другом во время лекции и после нее.

² Домашняя страница продукта Microsoft NetMeeting: http://www.microsoft.com/windows/netmeeting/.

³ Домашняя страница продукта Microsoft Windows Messenger: http://join.msn.com/general/home/.

⁴ Домашняя страница продукта Microsoft ConferenceXP: http://www.conferencexp.net/community/default.aspx.

⁵ Домашняя страница продукта Skype: http://www.skype.com

⁶ Россия осваивает видеоконференцсвязь: http://info.tatcenter.ru/society/10765.htm

В-пятых, большую ценность будет иметь запись лекции, которая позволит пользователям получать знания без участия лектора. Запись можно просматривать любое количество раз, приостанавливать для дополнительного размышления, перематывать на нужное место и т. д., что является факторами, повышающими удобство пользования материалом. Запись лекции желательно представлять в сети Интернет и в виде локальной копии. Локальная копия удобнее интернет-версии для пользователей, не обладающих дешевым каналом с большой пропускной способностью, достаточной для передачи видео приемлемого качества. Лектор может распространять лекции на CD-ROM на коммерческой основе.

Подход к построению системы

На основе предъявленных требований к системе, предлагается оригинальный подход к разработке мультимедиа-лектория.

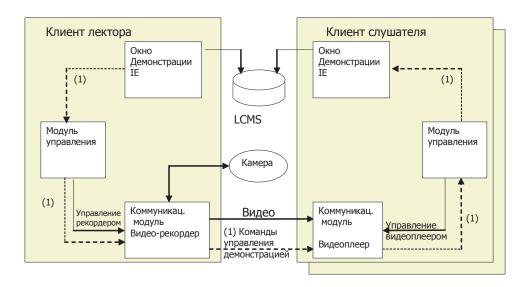
Основная трудоемкость и специфика разрабатываемой системы лежит в области создания, хранения и управления учебными материалами разных типов и их синхронизацией с видеосвязью. Необходимо обеспечить независимость системы от конкретных протоколов и возможность замены протокола сетевой передачи данных, не перестраивая всю систему. Для этого нужно вынести всю логику передачи данных в отдельный модуль и спроектировать систему независимой от него.

Эффективным решением будет использование LCMS системы (Learning Content Management System – Система управления контентом образовательного назначения) со встроенными блоками видеосвязи, управления и передачи по сети команд управления демонстрациями.

Для эффективной реализации мультимедиа-лектория используемая CMS система должна обладать рядом свойств.

- 1. Необходим объектный подход к классам демонстраций полиморфизм слайдов, реализация управления динамическими элементами, в методах класса.
- 2. Открытость системы в отношении разработки сложной модели данных, так как структура учебных материалов отличается некоторой сложностью.
 - 3. Возможность интеграции системы с видеосвязью.

Подробней о системах управления контентом образовательного назначения можно прочитать в работах «Инструментальный портал создания и поддержки информационных ресурсов научного и образовательного характера» [Мозлов, 2004], «Создание курсового обеспечения как информационных систем на основе баз данных учебных материалов, функционирующих в Интернет» [Казаков, 1999], «Организация информации в учебных ресурсах, построенных на базах данных: решение на основе метамодели данных» [Баяндина и др., 2004].


Управление объектами демонстраций предлагается осуществлять через систему команд, которые могут быть переданы, сохранены и воспроизведены повторно этим объектом. Клиентское приложение на стороне лектора управляет объектами демонстраций и когда лектор совершает какое-либо действие над ними, приложение формирует команду демонстрации, исполняет ее и отправляет копию команды клиентским приложениям слушателей. Клиент слушателя, получив команду, исполняет ее. Таким образом, все действия лектора над демонстрациями дублируются на стороне слушателя.

Архитектура системы

На основе предложенного подхода нами спроектирован мультимедиа лекторий, в основе которого лежит следующая архитектура. Мультимедиа-лекторий состоит из серверной части, клиента лектора и клиента слушателя.

Главная составляющая серверной части — сервер LCMS. Он предназначен для хранения демонстрационного ряда. Демонстрации создаются и редактируются лектором с помощью веб-интерфейса редактирования. Лектору предоставляются демонстрации разных типов, реализованные полиморфными классами. В серверной части также могут быть видеосервера, используемые для передачи видео с компьютера лектора на множество компьютеров слушателей. Их назначение — рассылка видео всей аудитории с помощью группового вещания по интернет-сети.

56 В. В. Казаков

Puc. 1. Архитектура мультимедиа лектория для режима online лекции

Клиент лектора, как и клиент слушателя, состоит из модуля управления, модуля коммуникаций и окна демонстраций.

В режиме online лекции (рис. 1) лектор с помощью инструментов управления манипулирует демонстрациями, в результате чего клиент лектора получает информацию о манипуляциях для отправки клиенту слушателя. Клиент слушателя, получив информацию, разбирает ее и дублирует действия лектора.

Модуль управления управляет модулем коммуникаций и окном демонстраций. Модуль управления получает из окна демонстрации команду на передачу вызова метода, преобразует ее в универсальный протокол, который передает модулю коммуникаций. Кроме того, модуль управления отвечает за инициализацию сеанса чтения и просмотра лекции, сохранение прочитанной лекции, организацию обратной связи и т. д.

Модуль коммуникаций лекторского клиента отвечает за передачу видео и команд демонстраций модулю коммуникаций слушателя и видеосерверу, который рассылает входящее видео и команды управления демонстрациями всей аудитории. Заметим, что для обеспечения независимости системы от конкретных протоколов и возможности замены протокола сетевой передачи данных, не перестраивая всю систему, было решено вынести всю логику передачи данных в отдельный модуль коммуникаций и спроектировать систему независимой от него.

Окно демонстраций отвечает за отображение и манипулирование демонстрациями. Модуль управления на клиенте лектора получает из окна демонстраций строку, содержащую команду управления демонстрацией. Эта команда содержит метод с параметрами, который необходимо выполнить на стороне слушателя, чтобы продублировать действие лектора.

Результаты

При выполнении работы получены следующие основные результаты.

На основе анализа имеющихся систем и технологий, предназначенных для удаленного чтения лекций, обоснована актуальность разработки мультимедиа-лектория — специализированного продукта для чтения удаленных видео-лекций, сопровождаемых сложным интерактивным и динамичным демонстрационным рядом, и сформулированы требования к такой системе.

Предложен оригинальный подход для построения мультимедиа-лектория, который основан на трансляции команд управления демонстрациями объектам на стороне слушателя.

Спроектирована архитектура системы на основе LCMS системы с встроенным заменяемым коммуникационным модулем, что позволяет легко адаптировать систему под новые стандарты видеоконференцсвязи.

Разработаны методы, обеспечивающие расширяемость системы мультимедиа-лектория новыми типами демонстраций, предложен универсальный протокол. Определены и спроектированы наиболее востребованные типы демонстраций (тексты с графикой, видео, лекторс-

кая доска) и инструменты работы с ними (выделения текста, масштабирование и позиционирование графики, элементы управления видеозаписями, перо, указатель).

Спроектированы средства обратной связи мультимедиа лектория – видео-вопрос, тестирование, статистика слушателей, чат, форум. Реализована обратная связь в виде тестирования и видео-вопросов. Реализованы средства сохранения лекции в Интернете и на локальном носителе.

Система представлена Мультимедиа центром НГУ на сайте http://i-portal.nsu.ru и апробирована. В ходе работы было проведено несколько пробных сеансов чтения лекции из НГУ в Лейпцигском университете прикладных наук. Функциональность системы была протестирована в полном объеме и показала свою работоспособность.

В результате выполнения проекта было выявлено, что система дистанционного чтения лекций с динамическим и интерактивным демонстрационным рядом – перспективное направление в развитии инструментария для образовательного процесса. Была продемонстрирована принципиальная возможность создания мультимедиа-лектория на основе такой LCMS системы, как Инструментальный портал. Таким образом, в результате работы предложен путь создания эффективной системы дистанционного чтения лекций с видеосвязью и демонстрационным рядом.

Список литературы

Баяндина 3. В., Задорожный А. М., Казаков В. Г. и др. Организация информации в учебных ресурсах, построенных на базах данных: решение на основе метамодели данных // Вестн. Новосиб. гос. ун-та. Серия: Информационные технологии. 2004. Т. 1, вып. 2. С. 73–90.

Казаков В. Г. Создание курсового обеспечения как информационных систем на основе баз данных учебных материалов, функционирующих в интернет / ИОЛ'99. Междунар. конф. Тез. докл. СПб., 1999. С. 186–187.

Мозлов Е. В. Инструментальный портал создания и поддержки информационных ресурсов научного и образовательного характера / «Новые информационные технологии». Тез. докл. XII Междунар. студ. школы-семинара. М.: МГИЭМ, 2004. С. 338–340.

Материал поступил в редколлегию 14.08.2007