Исследование экономики России с использованием моделей с нечеткими параметрами

Научное издание

Ответственные редакторы:
dоктор экономических наук А.О. Баранов
dоктор технических наук В.Н. Павлов

Новосибирск
2009

ISBN 978-5-94356-811-4

Монография посвящена вопросам совершенствования инструментов исследования экономики на макроэкономическом и межотраслевом уровне в направлении более полного отображения неопределенности экономических процессов. Для более адекватного учета неопределенности в работе используется метод нечетко-множественного описания параметров. В монографии дано методологическое обоснование целесообразности использования нечетко-множественных методов в макроэкономических исследованиях. Описана методика макроэкономических и многоотраслевых прогнозов, выполняемых с использованием динамической модели межотраслевого баланса и макроэкономических моделей с нечетко-множественным заданием параметров. В работе анализируется развитие экономики России в период после 1994 г. Выполненные прогнозы развития российской экономики иллюстрируют возможности разработанного инструментария.

Научное издание рассчитано на работников федеральных и региональных органов управления, научных работников, преподавателей и студентов экономических факультетов вузов.

Монография издается на основании решения Ученого совета экономического факультета Новосибирского государственного университета.

Рецензенты
доктор экономических наук, профессор Б.Л. Лавровский
dоктор экономических наук, профессор А.С. Новоселов

© А.О. Баранов, В.Н. Павлов, 2009
© Новосибирский государственный университет, 2009
СОДЕРЖАНИЕ

Введение...6
Глава 1. Неопределенность в социально-экономических системах.....................................8
 1.1. Риски развития социально-экономической системы, связанные с зависимостью от
конъюнктуры мировых рынков, как важнейший фактор формирования неопределенности
экономической динамики (на примере зависимости от рынков топливно-энергетических
ресурсов) ..10
 1.2. Ожидания как фактор формирования неопределенности в экономических системах ..18
 1.2.1 Влияние инфляционных ожиданий на прогнозную реальную процентную ставку...19
 1.2.2 Влияние ожиданий на приведенный доход..21
 1.2.3 Влияние ожиданий на фондовый рынок...22
 1.2.4 Влияние ожиданий на потребление ...25
 1.2.5 Влияние ожиданий на инвестиции ...26
 1.2.6 Влияние ожиданий на динамику производства и экономическую политику: анализ с
использованием модифицированной модели IS-LM ..28
 1.2.7 Влияние экономической политики на производство и норму процента в модели IS-
LM с ожиданиями ...34
 1.2.8 Последствия уменьшения государственных расходов ..36
 1.2.9 Ожидания в открытой экономике ...37
2 Математическое обоснование расчетов по оптимизационной межотраслевой модели с
нечеткими параметрами ..41
 2.1 Нечеткие множества ..41
 2.2 Нечеткая оптимизация ..43
 2.3 Оптимизация с нечеткими ограничениями ..44
 2.4 Оптимизация с нечеткой целью ..46
 2.5 Нечеткая цель и нечеткие ограничения ..47
 2.6 Свойства точечно-множественного отображения Z(α,β) ...48
 2.7 Метод интервального представления данных ...50
 2.8 Математические свойства нечетких показателей, порожденных интервальным
представлением данных ..51
 2.9 Нечеткие отображения, порожденные точечно-точечными функциями.......................63
3. Оптимизационная межотраслевая динамическая модель с нечеткими параметрами.......64
4. Усовершенствованные алгоритмы и программное обеспечение расчетов с использованием
нечетко-множественных методов ...70
 4.1. Основные понятия, используемые в данном разделе ..70
 4.2. Функциональные свойства нечетких множеств ..71
 4.3. Теоретико-множественные операции над нечеткими множествами72
 4.4. Совпадение нечетких множеств ..73
 4.5. Нечеткие множества, построенные по методу интервального преобразования
случайных величин ...73
 4.6. Случайные величины, порожденные суммируемыми нечеткими множествами74
 4.7. Статистическая процедура приближенного вычисления функции принадлежности
нечеткого множества ...75
 4.8. Статистический алгоритм расчетов по межотраслевой модели с нечеткими
параметрами ...76
 4.9. Нечеткая оценка надежности прогнозных экономических показателей77
 4.10. Зависимость надежности совпадения случайных величин от точности интервального
преобразования ..80
 4.11. Обобщенные интегральные преобразования случайных величин81
5. Информационная база за 2007 г. динамической межотраслевой модели экономики России с нечеткими параметрами

5.1. Структура информационной базы ДММ

5.2. Построение информационной базы ДММ за 2007 г.

5.2.1. Сбор необходимой статистической информации

5.2.2. Номенклатура отраслей национальной экономики

5.2.3. Оценка отраслевых объемов производства и использования валовой продукции

5.2.4. Определение коэффициентов материалоемкости произведенного продукта в межотраслевом разрезе за 2003 год

5.2.5. Формирование основных показателей процесса воспроизводства основных фондов. Расчет валовой продукции фондосоздающих отраслей

6. Алгоритмы и программное обеспечение расчетов по динамическим межотраслевым моделям с использованием нечетко-множественных методов

6.1. Нечеткая арифметика

6.2. Алгоритм расчетов по модели с нечеткими параметрами

7. Прогнозирование развития экономики России с использованием динамической межотраслевой модели с нечеткими параметрами

7.2. Результаты прогнозных расчетов с использованием ДММ с нечеткими параметрами и их интерпретация

8. Методика анализа устойчивости прогнозируемых экономических показателей

8.1. Основные определения

8.2. Методика количественного анализа устойчивости

8.3. Статистический анализ асимптотических свойств устойчивости

8.4. Анализ устойчивости траекторий отраслевых валовых выпусков к изменениям входных параметров динамической модели межотраслевого баланса с нечеткими параметрами

9. Нечеткий анализ неопределенности в моделировании эколого-экономических процессов в России

10. Нечеткий анализ неопределенности динамики цен и производства с использованием монетарного блока динамической модели межотраслевого баланса

10.1. Описание исходной информации

10.2. Анализ факторов, определивших инфляцию в России в 1994-1999 гг.

10.3. Анализ факторов, формировавших динамику цен в России в период 1999-2007 гг.

10.5. Влияние монетарных факторов на динамику производства в России в период экономического подъема

10.6. Прогнозирование динамики производства с использованием методов нечетких множеств

11. Концепция согласования прогнозных расчетов по динамической межотраслевой модели с нечеткими параметрами и прогнозных расчетов по монетарному и экологическому блокам

11.1. Математическое описание монетарного блока с нечеткими параметрами и согласование результатов прогнозных расчетов по нему с моделями системы КАМИН-ФАЭЗИ

11.2. Математическое описание экологического блока с нечеткими параметрами и согласование результатов прогнозных расчетов по нему с моделями системы КАМИН-ФАЭЗИ
11.3. Математическая формализация нечеткого согласования расчетов в системе КАМИН-ФАЗЗИ...197
Список литературы ...200
Приложение A ..206
Приложение B ..207
Приложение В ...209
Приложение Г ...210
Введение

В монографии представлены результаты исследований, которые выполнялись при финансовой поддержке программы Рособразования по развитию научного потенциала высшей школы - проект № РНП.2.1.3.2428.

Актуальность исследований обусловлена тем обстоятельством, что разработанные к настоящему времени инструменты прогнозирования экономики на макро и межотраслевом уровнях недостаточно адекватно отражают фактор неопределенности. Это не позволяет оценить степень правдоподобия полученных с их использованием прогнозных показателей.

Цель проведенных работ состояла в приложении методов нечеткого описания параметров к анализу и прогнозированию экономической динамики на макро и межотраслевом уровнях, включая совершенствование одного из наиболее известных инструментов прогнозирования национальной экономики – динамических межотраслевых моделей путем построения модификации этих моделей с нечетко заданными параметрами. Нечеткое представление макроэкономических и отраслевых показателей в модели обогащает результаты прогнозных исследований, позволяет оценить не только прогнозные значения показателей, но и оценить степень правдоподобия каждого значения или степень доверия ему. Появляется возможность оценить надежность нечеткого ранжирования прогнозных вариантов по заданным наиболее правдоподобным значениям показателей, характеризующих эти варианты. В результате повышается обоснованность полученных с помощью динамических межотраслевых моделей прогнозов. Помимо этого, использование аппарата нечетких множеств позволяет исследовать устойчивость эндогенных показателей модели по отношению к вариации ее экзогенных показателей. В результате появляется возможность количественной оценки последствий большей или меньшей волатильности тех или иных входных макроэкономических и отраслевых переменных для устойчивости ключевых характеристик экономического роста.

В теории и практике экономико-математического моделирования и прогнозирования экономики на макро и межотраслевом уровнях в России и за рубежом не разработаны и не используются динамические макро и межотраслевые модели с нечетким представлением параметров. В этом отношении представленные в данной монографии результаты исследования являются пионерными.

В рамках проведенных исследований была выполнена разработка алгоритмов, программного и информационного обеспечения расчетов по динамическим межотраслевым и макроэкономическим моделям с использованием нечетко-множественных методов, была
построена 40-отраслевая динамическая межотраслевая модель экономики России с нечеткими параметрами, которая использовалась для проведения экспериментальных прогнозных расчетов. В результате, авторами была создана модификация разработанной ранее системы КАМИН - система КАМИН-ФАЗЗИ, позволяющая анализировать и прогнозировать развитие экономики страны на макро и межотраслевом уровнях с использованием аппарата методов нечетких множеств. Аббревиатура КАМИН расшифровывается как система Комплексного Анализа Межотраслевой ИНформации. Она разрабатывается в ИЭОПП СО РАН с конца 70-х годов XX века. ФАЗЗИ (FUZZY) означает в переводе с английского «нечеткий» - от fuzzy sets, что в переводе с английского означает «нечеткие множества».

Монография подготовлена авторским коллективом в следующем составе: д.э.н. А.О. Баранов (гл. 1 п.1.2; гл. 3, 5, гл.7, гл. 10, гл. 11 п. 11.1), к.э.н. В.М. Гильмулдинов (гл.1 п.1.1; гл. 5, 8), д.э.н. Г.М. Мкртчян (гл.9), к.т.н. А.В. Павлов (гл. 2, 3, 4, 6, 8), д.т.н. В.Н. Павлов (гл. 2, 3, 4, 5, 6, 7, 8, 10 п. 10.6; 11 п.11.3), к.э.н. И.А. Сомова (гл. 10, п. 10.1-10.4), к.э.н. Т.О. Тагаева (гл.5, 9, 11 п. 11.2).
Глава 1. Неопределенность в социально-экономических системах

В своей основополагающей работе «Кибернетика или управление и связь в животном и машине» Норберт Винер, рассматривая рыночную экономическую систему с точки зрения теории игр, писал: «…при многих играх в подавляющем большинстве случаев результат игры характеризуется крайней неопределенностью и неустойчивостью» [11, с. 231-232]. Следовательно, кибернетика рассматривает социально-экономические системы как сложные объекты, характеризующиеся высокой недетерминированностью и неопределенностью поведения.

Причины недетерминированности социально-экономических систем могут быть сведены в следующие группы1.

1. Социально-экономические причины недетерминированности.

В социально-экономических системах даже в случае, если известны все их элементы, невозможно точно предсказать их поведение в прогнозируемом периоде, что предопределяет неопределенность результата воздействия на систему каких-либо внешних импульсов или шоков.

Другой аспект состоит в том, что имеющаяся информация о социально-экономической системе характеризуется неполнотой. Это приводит к невозможности исчерпывающего ее описания. Следствием этого также является неопределенность в динамике развития системы под воздействием внешних импульсов.

Если анализировать развитие какой-либо отдельной экономической подсистемы (например, предприятия), то неопределенность в ее поведении можно объяснить двумя классами факторов.

А. Систематические, связанные с влиянием на развитие подсистемы факторов, относящихся ко всей экономике страны: макроэкономическая политика, влияние на развитие экономической системы изменений на мировом рынке и т.д. К этой же группе факторов можно отнести массовое изменение ожиданий потребителей и производителей продукции относительно динамики будущих цен, реальной ставки процента, ВВП, доходов и т.д.

Б. Несистематические, относящиеся только к данной подсистеме (специфика технологии производства данного предприятия, ограниченность источников сырья, возможность забастовок и т.д.).

2. Технико-экономические причины недетерминированности.

1 Аналогичный подход реализован в работе Петракова Н.Я. и Ротаря В.И. [37, с. 13 – 22].
Возникновение новых технологий приводит к структурным изменениям в экономике. Поскольку невозможно точно предсказать время появления новых технических идей и реализующих их технологий, постольку технический прогресс является одним из важнейших непрерывно действующих факторов, порождающих недетерминированность экономической системы.

Другая важнейшая причина недетерминированности экономической системы связана с неопределенностью в реализации инвестиционных проектов. При прогнозировании сроков реализации проектов и затрат на них невозможно учесть все влияющие на них факторы, что приводит к отклонениям от намеченных параметров. Например, увеличение сроков строительства является достаточно часто встречающимся явлением, приводящим к сдвигу во времени ввода в действие мощностей. Последнее является причиной изменения во времени графика выпуска продукции, отклоняющегося от запланированного.

3. Причины недетерминированности, обусловленные влиянием природных факторов.

На развитие экономики оказывают влияние природные катаклизмы (землетрясения, цунами и т.д.), колебания уровня осадков и температуры в различные годы.

4. Особенности распространения информации в обществе.

В последние тридцать лет активно развивается теория, объясняющая недетерминированность социально-экономических систем на основе особенностей распространения информации в обществе. Эти особенности приводят к тому, что экономика реагирует на те или иные изменения в экономической политике с запаздыванием или не так, как ожидали органы управления экономической системы. В этой теории можно выделить три подхода [57, с. 152].

А. Роберт Лукас [55] и Эдмунд Фелпс [59] объясняют неопределенную реакцию экономических субъектов на изменение важнейших параметров экономической системы проблемой получения информации. Иначе говоря, экономические субъекты не получают всей информации, необходимой для принятия рациональных решений.

Б. Второй подход, называемый проблемой жестко или трудно изменяющихся ожиданий (sticky expectations approach), был предложен Грегори Мэнкью и Риккардо Рейсом [56]. Он объясняет инерционность экономической системы и неопределенность в реакции экономических субъектов на изменение экономической политики на основе запаздывания в получении ими необходимой для принятия решений информации.

В. Третий подход называется теорией рациональной невнимательности и развивается в работах Кристофера Симза [62]. Согласно данной теории экономические субъекты

2 Влияние внешних факторов на неопределенность экономической системы рассмотрено в работе [7].
объективно имеют ограничения в возможности восприятия и переработки информации и поэтому используют для изменения своего поведения приближенную или огрубленную информацию. В результате экономические субъекты действуют на основе прогнозов будущего развития экономики, которые хуже тех, которые были бы построены на основе всей необходимой информации. Как следствие, экономическая система развивается по траектории, отличающейся от той, которую планировали иметь органы государственного управления при принятии тех или иных решений.

Все вышеперечисленные факторы являются достаточным основанием для количественного отображения неопределенности при построении экономико-математических моделей.

Широко известны три теории, занимающиеся разработкой методов количественной оценки неопределенности: теория вероятностей, теория возможностей и теория достоверностей. В теории вероятностей для оценки неопределенности используются аддитивные функции множества, в теории возможностей – субаддитивные функции множества, в теории достоверностей – супераддитивные функции множества.

Нечетко-множественные методы широко используются в настоящее время в микрэкономических исследованиях, особенно в области финансов. Для построения нечетких параметров в моделях финансовой сферы наиболее часто используется метод нейронных сетей, применяемый к базам данных, содержащих выборки большого объема (тысячи или десятки тысяч наблюдений). Поэтому применение нейронных сетей на макроэкономическом уровне затруднительно, т.к. отсутствуют аналогичные по объемам однородные выборки данных.

Предлагаемые в данной работе нечетко-множественные методы позволяют более адекватно отображать фактор неопределенности в макроэкономических моделях.

1.1. Риски развития социально-экономической системы, связанные с зависимостью от конъюнктуры мировых рынков, как важнейший фактор формирования неопределенности экономической динамики (на примере зависимости от рынков топливно-энергетических ресурсов)

Неопределенность неотъемлемо присуща любой экономической системе, рассматриваемой в динамике. При этом неопределенность экономического развития может проявляться как на микро, так и на макроуровне.

Влияние неопределенности на поведение экономических субъектов на микроуровне является на настоящий момент детально изученным. Неопределенность, с одной стороны, порождает издержки для экономических субъектов. Данные издержки связаны с
последствиями недостаточного учета неопределенности при принятии решений и негативного развития ситуации, в которой эти решения принимаются. Возникновение таких издержек стимулирует экономических субъектов к реализации мер по их снижению, что, в свою очередь, требует затрат на сбор более полной информации, ее анализ и страхование рисков. Однако неопределенности невозможно, так как получ полной информации о развитии событий в будущем и поведении экономических агентов.

С другой стороны, неопределенность может приводить к возникновению у экономических субъектов дополнительной прибыли в случае удачного развития ситуации, в которой принимаются решения. Этот вопрос был впервые детально исследован Френком Хейнеман Найтом (1921), связавшим нестрахуемую (неустранимую) неопределенность с возникновением феномена предпринимательской прибыли [25, с. 294].

Переход к рассмотрению роли неопределенности в развитии национальной экономики перемещает акцент в анализе неопределенности с уровня отдельных экономических субъектов на уровень взаимодействия их множества на агрегированных рынках (рынке товаров и услуг, денежном рынке, валютном рынке, рынке рабочей силы и др.). Особую сложность при анализе роли неопределенности в развитии национальной экономики вызывает высокая степень взаимного влияния различных рынков друг на друга.

Основные источники неопределенности, возникающей на макроуровне, странах с высокой степенью открытости экономики изменения конъюнктуры на внешних рынках экспортируемой продукции могут существенно влиять на динамику социально-экономического развития, затрагивая фактор конкурентоспособности национальных производителей через изменение структуры платежного баланса и курса национальной валюты.

Экономика России характеризуется высокой степенью открытости с ярко выраженной экспортосырьевой ориентацией по углеводородному сырью (см.: Таблицу 1.1).

Таблица 1.1. Основные показатели товарного экспорта России в 1995-2006 гг.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ВВП1) (млрд. $)</td>
<td>376,1</td>
<td>281,7</td>
<td>182,0</td>
<td>259,8</td>
<td>309,9</td>
<td>346,5</td>
<td>432,6</td>
<td>582,4</td>
<td>766,1</td>
<td>981,6</td>
</tr>
<tr>
<td>Экспорт товаров (млрд. $)</td>
<td>82,4</td>
<td>74,4</td>
<td>75,6</td>
<td>105,0</td>
<td>101,9</td>
<td>107,2</td>
<td>135,9</td>
<td>183,5</td>
<td>243,6</td>
<td>303,9</td>
</tr>
<tr>
<td>в том числе: продукция</td>
<td>30,5</td>
<td>27,9</td>
<td>31,0</td>
<td>52,8</td>
<td>51,7</td>
<td>55,8</td>
<td>73,7</td>
<td>100,4</td>
<td>148,9</td>
<td>190,8</td>
</tr>
<tr>
<td>Экспорт/ВВП (%)</td>
<td>21,9</td>
<td>26,4</td>
<td>41,5</td>
<td>40,4</td>
<td>32,9</td>
<td>30,9</td>
<td>31,4</td>
<td>31,5</td>
<td>31,8</td>
<td>31,0</td>
</tr>
<tr>
<td>Экспорт /Экспорт(%)</td>
<td>37,0</td>
<td>37,5</td>
<td>41,0</td>
<td>50,3</td>
<td>50,8</td>
<td>52,0</td>
<td>54,2</td>
<td>54,7</td>
<td>61,1</td>
<td>62,8</td>
</tr>
</tbody>
</table>

1) оценка по валютному курсу российского рубля к доллару США.
Источник: ЦБ РФ, ФСГС РФ
Анализ представленных в таблице 1.1 данных позволяет сделать следующие выводы:

1) Россия является страной с высокой степенью открытости экономики – доля экспорта в ВВП составляет значительную величину (свыше 30% за последние 8 лет, при максимальном значении 41,5% в 1999 г.);

2) в России наблюдается устойчивая тенденция роста доли углеводородного сырья в товарном экспорте: с 37,0% в 1995 г. до 62,8% в 2006 г., при падении доли продукции несырьевых отраслей.

Таким образом, в российской экономике преобладает тенденция возрастающей экспортосырьевой ориентации при высокой степени открытости экономики, с одной стороны, увеличивает ее зависимость от конъюнктуры мировых рынков сырья, а с другой стороны - создает широкие каналы для развития так называемой «голландской болезни» (см. [12]).

Экспортосырьевая ориентация экономики России увеличивает неопределенность социально-экономического развития, что обусловливается высокой изменчивостью цен на основную статью российского экспорта – углеводородное сырье. Так, на рисунке 1.1 изображена динамика цен на нефть марки Брент, основного ценового ориентира на нефтяном рынке, за период 1976-2006 гг.

![Рисунок 1.1. Динамика среднегодовой цены на нефть марки Брент в 1976-2006 гг. (долларов США за баррель)](image)

В пользу высокой изменчивости цен на нефть говорит соотношение показателя стандартного отклонения, составляющего 12 долларов за баррель, и средней цены за
рассматриваемый период – 25,1 доллара за баррель, то есть в среднем за указанный период цены на нефть менялись на ±47,8%.

Высокая зависимость российской экономики от мировых цен на нефть на фоне их высокой изменчивости выступили в качестве основных причин кризиса 1998 года, когда значительное падение мировых цен на нефть снизило поступление валютной выручки в страну, резко ухудшив состояние платежного баланса, что потребовало девальвации российского рубля, а сокращение поступления налогов и экспортных пошлин в федеральный бюджет от компаний нефтегазового сектора привело к необходимости приостановить выплаты по внутренним и внешним долгам Российской Федерации.

Указанные обстоятельства обусловливают необходимость детального анализа возможных негативных последствий для экономики России, связанных с высокой неопределенностью конъюнктуры мировых рынков углеводородного сырья. На наш взгляд, можно выделить шесть основных рисков, возникающих вследствие высокой экспортосырьевой ориентации, условно их разделив на две группы:

1. Риски, обусловленные благоприятной конъюнктурой мировых сырьевых рынков:
 - «голландская болезнь», возникающая вследствие значительного притока валютной выручки, ведущего к укреплению национальной валюты, либо на фоне усиления инфляции, либо на фоне роста номинального курса национальной валюты;
 - структурная деформация экономики, вследствие повышенной инвестиционной привлекательности и отраслевой конкурентоспособности по факторам производства отраслей сырьевого сектора и смежных с ними отраслей;
 - «ресурсное проклятие» – благоприятная конъюнктура мировых рынков сырья создает иллюзию успешности проводимой политики и снижает стимулы к проведению институциональных преобразований и активной структурной политики;
 - избыточные инвестиции в создание добывающей и транспортной инфраструктуры в сырьевом комплексе страны, часть которой может оказаться невостребованной в случае ухудшения конъюнктуры на мировых рынках.

2. Риски, обусловленные неблагоприятной конъюнктурой мировых сырьевых рынков:
 - ухудшение торгового баланса страны, вследствие падения поступления валютной выручки от экспорта сырья, ведущее к ослаблению национальной валюты, что, в свою очередь, ведет к удороожанию зарубежных технологий для отечественных производителей и импортных товаров для потребителей, и стимулирует отрасли, ориентированные на импортозамещение;
 - ухудшение состояния бюджетной сферы, вследствие снижения поступления экспортных пошлин и налогов от предприятий сырьевого комплекса.
Возникновение указанных рисков в условиях экспортосырьевой ориентации экономики с высокой степенью ее открытости формирует высокую неопределенность относительно социально-экономического развития. При этом неопределенность возникает как в направлениях структурной перестройки экономики, так и в динамике ключевых макроэкономических показателей (курса национальной валюты, темпа инфляции, темпов роста экономики, уровня и структуры инвестиционной активности, процентных ставок и т.д.).

Одной из центральных проблем для российской экономики в настоящее время, на наш взгляд, является проблема развития «голландской болезни», обусловленная устойчивым укреплением курса российского рубля по отношению к основным иностранным валютам начиная с 1999 года (исследованию механизма развертывания «голландской болезни» в российской экономики посвящено, например, [12]).

Для выработки мер, позволяющих снизить риски «голландской болезни» необходимо детально изучить механизм ее развития. Схема развития «голландской болезни» представлена на рисунке 1.2.
Улучшение конъюнктуры на мировых сырьевых рынках при наличии развитой сырьевой базы

Открытие и начало интенсивного освоения крупных месторождений сырья

награждение объемов добычи сырья и переориентация на экспортные поставки в связи с ростом мировых цен

начало/рост поставок сырья на внешний рынок

Рост поступления валютной выручки от экспорта сырья

Увеличение предложения иностранной валюты на внутреннем рынке

Центральный банк не вмешивается в баланс спроса и предложения на валютном рынке

Центральный банк начинает скупать и. валюту, чтобы не допустить роста номинального курса национальной валюты

Рост номинального курса национальной валюты

Укрепление национальной валюты

Снижение конкурентоспособности национальных производителей

Замедление темпов роста обрабатывающей промышленности, усиление зависимости экономики от экспорта сырья, снижение темпов научно-технического прогресса

Рисунок 1. Механизм развития «голландской болезни»

Начальным этапом для развития «голландской болезни» является значительное улучшение конъюнктуры на мировом рынке сырья, имеющегося в данной стране в относительном изобилии, и/или начало интенсивного освоения лежащих на территории данной страны месторождений в целях поставок добываемого сырья на внешний рынок. Так как внутренний спрос на сырье растет относительно ограниченными темпами по сравнению с объемами добычи сырья, что обусловлено, с одной стороны, технологической инертностью промышленного производства, а с другой – ограниченным ростом спроса на продукцию обрабатывающей промышленности, то рост добычи приводит к увеличению физических объемов поставок сырья на экспорт. Если же страна ранее являлась импортером данного сырья, то под воздействием роста его внутренней добычи, она может превратиться в экспортера, как это было, например, в Великобритании. Отметим также, что улучшение конъюнктуры на мировом рынке или открытие крупных месторождений сырья делают более эффективной его добычу и стимулируют добывающие компании расширять свою
деятельность. Это приводит к перераспределению производственных ресурсов в пользу добывающего сектора (усиление экспортосырьевой ориентации), которое может происходить как под воздействием рыночных механизмов (как, например, в Великобритании и Голландии), так и директивными методами (как, например, в Нигерии). Конечным результатом указанных процессов является изменение структуры торгового баланса страны и значительный рост поступающей от экспорта сырья валюной выручки.

Значительный приток валютной выручки от экспорта сырья включает уже процессы, ведущие к «голландской болезни». Здесь возможно два варианта.

В условиях плавающего валютного курса и отсутствия дополнительных интервенций на валютном рынке, увеличение предложения иностранной валюты на внутреннем рынке приведет к росту номинального курса национальной валюты. Рост номинального курса национальной валюты приводит к ее непосредственному укреплению относительно иностранных валют, что сопровождается увеличением эффективности импортных поставок продукции в данную страну и снижением эффективности экспортных поставок продукции, производимой в данной стране. Кроме указанных процессов рост номинального курса национальной валюты может привести к изменению портфельных решений инвесторов в пользу финансовых активов данной страны, что увеличит приток валюты по счету операций с капиталом и будет способствовать дальнейшему укреплению национальной валюты.

Второй вариант возникает в случае если Центральный банк страны в ответ на увеличение предложения иностранной валюты на внутреннем рынке для недопущения существенного изменения валютного курса выкупает излишнюю иностранную валюту у экспортеров, что приводит к увеличению денежной массы и росту золотовалютных резервов Центрального банка. Увеличение денежной массы в этом случае ведет к ускорению инфляции. Последнее обстоятельство будет также, как и в первом варианте, способствовать укреплению национальной валюты.

Таким образом, вне зависимости от политики Центрального банка приток дополнительной валютной выручки приведет к укреплению национальной валюты.

Укрепление национальной валюты, в свою очередь, будет вести к ослаблению конкурентоспособности внутренних товаровпроизводителей. Импорт станет более эффективным, так как импортный товар начнет приносить поставщику большую выручку, измеренную в иностранной валюте, что сделает отечественные товары относительно более дорогими по сравнению с импортными, а соответственно, ухудшит положение внутренних производителей, конкурирующих с импортными поставщиками. Также ухудшится положение внутренних производителей, поставляющих товары на экспорт, так как их продукция станет относительно более дорогой на мировых рынках, по сравнению с
продукцией иностранных производителей. Таким образом, укрепление национальной валюты приведет к общему падению конкурентоспособности отечественных товаровпроизводителей и может вызвать замедление роста в обрабатывающей промышленности. Заметим, что укрепление национальной валюты слабо скажется на секторе услуг, так как в этой сфере воздействие иностранной конкуренции относительно невелико, а развитие определяется динамикой платежеспособного спроса. Следовательно, можно предположить, что в условиях поступления в страну дополнительных доходов от экспорта сырья и расширения совокупного спроса, в сфере услуг, по крайней мере, на начальных этапах будет наблюдаться рост. Замедление роста в обрабатывающих отраслях промышленности и преобладание положительных факторов развития в добывающих отраслях и сфере услуг будут переориентировать производственные и финансовые ресурсы в пользу последних. Отметим также, что в случае, если падение конкурентоспособности в обрабатывающей промышленности окажется значительным, «голландская болезнь» может привести к появlement высокои структурной безработицы.

Таким образом, «голландская болезнь» ведет к изменению структуры национальной экономики, в результате чего происходит сокращение доли обрабатывающей промышленности, что негативно отражается на темпах научно-технического прогресса и потенциале будущего социально-экономического развития. Помимо этого «голландская болезнь» также усиливает зависимость национальной экономики и курса национальной валюты от конъюнктуры на мировом рынке экспортируемого сырья, что в случае длительного периода низких цен может привести к системному экономическому кризису.

Указанные обстоятельства обусловливают необходимость выработки мер по уменьшению негативного воздействия «голландской болезни» на национальную экономику.

Основной задачей государства в условиях значительного роста поступлений валютной выручки от экспорта является нейтрализация излишних денег в экономике. Одним из способов может выступать введение налогообложения, позволяющего изымать сверхдоходы в государственный бюджет, что дает возможность выровнять инвестиционную привлекательность сырьевых отраслей с отраслями обрабатывающей промышленности, и, кроме того, направлять данные средства на инвестиционные и инновационные нужды (формирование, так называемого, «инвестиционного фонда»). Однако данный способ требует наличия эффективных механизмов перераспределения средств через государственный бюджет, благоприятного инвестиционного климата, отсутствия коррупции и бюрократии, и по этой причине может быть реализован далеко не во всех странах, подверженных «голландской болезни».
Другим способом уменьшения негативного воздействия «голландской болезни» является обеспечение сбалансированности платежного баланса либо за счет формирования так называемого «стабилизационного фонда», средства которого вкладываются в иностранные активы, либо за счет стимулирования чистого оттока капитала из страны (например, через досрочное погашение государственного внешнего долга). Однако данный способ имеет исключительно антиинфляционную направленность и не позволяет направлять возникающие от экспорта сырья дополнительные доходы на развитие национальной экономики и редко рассматривается как действенный способ преодоления «голландской болезни».

1.2. Ожидания как фактор формирования неопределенности в экономических системах

Как уже было отмечено выше, одним из важнейших факторов, порождающих неопределенность в развитии экономической системы, является изменение ожиданий экономических субъектов. Домашние хозяйства и фирмы, принимая свои решения, учитывают ожидаемые изменения различных экономических переменных в будущем. В формировании динамики цен значительную роль играют инфляционные ожидания. Однако влияние ожиданий на экономическую динамику не ограничивается инфляционными явлениями. Большое влияние на решения домашних хозяйств и фирм оказывают ожидания изменения процентных ставок, обменного курса национальной валюты и основных мировых валют (доллар, евро) и т.д.

Теория рациональных ожиданий впервые была развита в начале 60-х годов 20 века американским экономистом Джоном Мутом (John Muth) [58]. Он же ввел термин «рациональные ожидания» для описания ситуаций, когда результат развития экономической системы частично зависит от ожиданий экономических субъектов (фирм и домашних хозяйств).

Необходимо отметить, что ожидания использовались в экономической теории намного раньше - в работах А. Пигу, Дж. Кейнса и Дж. Хикса. Например, Дж. Кейнс фактически говорил об ожиданиях, когда описывал влияние волн оптимизма и пессимизма экономических субъектов на их экономическую активность. Однако современная теория рациональных ожиданий придает им намного большее значения с точки зрения влияния на развитие экономической системы и подробно анализирует последствия изменения ожиданий для экономической динамики.
Пристальное внимание влиянию ожиданий на динамику макроэкономических переменных было уделено в работах американского экономиста Роберта Лукаса. В 70-х годах XX века он, а также другой американский экономист Томас Сарджент опубликовали работы, где рассмотрели вопросы формирования ожиданий и указали на необходимость их более корректного отражения в экономико-математических моделях, используемых для макроэкономического прогнозирования ([53], [54], [61]). Системное рассмотрение вопросов влияния ожиданий на динамику макроэкономических переменных дается в работах профессора Массачусетского технологического института (США) Оливера Бланшарда [49].

По нашему мнению, как в отечественной, так и в зарубежной литературе влиянию ожиданий на неопределенность развития экономической системы уделяется недостаточно внимания. В связи с этим представляется целесообразным более пристально посмотреть на вариацию ожиданий как на фактор, формирующий недетерминированность развития экономики.

1.2.1 Влияние инфляционных ожиданий на прогнозную реальную процентную ставку

В экономическом анализе значительное внимание уделяется отличию между номинальными и реальными процентными ставками. Если \(i_t, r_t \) - номинальная и реальная процентная ставки в отчетном периоде \(t \) соответственно, то их взаимосвязь можно описать следующим уравнением:

\[
1 + r_t = \frac{1 + i_t}{1 + \pi_t}
\]

где \(\pi_t = \frac{P_t - P_{t-1}}{P_t} \) - темп прироста цен или инфляция в году \(t \).

Понятие реальной процентной ставки связано с тем обстоятельством, что экономического субъекта интересует не номинальный запас денег, которым он располагает, а то количество товаров и услуг, которое он может на него приобрести. Следовательно, домашние хозяйства и фирмы интересует не номинальный прирост ценности их активов, а прирост их реальной ценности, то есть количество товаров и услуг, которое можно приобрести на деньги, полученные от их продажи.

\[3\] В данном подразделе изложение проблем влияния ожиданий на динамику макроэкономических показателей дано в интерпретации близкой описанию этого вопроса в работе [49].
Для незначительных темпов прироста цен на практике используют приблизительную упрощенную формулу расчета реальной процентной ставки на основе номинальной:

$$ r_t \approx i_t - \pi_t $$ \hspace{1cm} (1.2)

Если экономические субъекты планируют свои доходы в будущем, то при условии, что ставка процента, которая используется при оценке ценности активов в будущем периоде – известна, расчет реального процента, который будет получен за период, производится с учетом ожидаемой в будущем периоде инфляции. Покажем это.

Если уровень цен в конце года t равен P_t, а ожидаемый уровень цен в конце года $t+1$ равен P^e_{t+1}, то количество товаров, которое индивидуум сможет купить в конце года $t+1$ на сумму $1+i_t$ рублей равно: $(1+i_t) \frac{P_t}{P^e_{t+1}}$. С учетом этого обстоятельства с отображением ожиданий взаимосвязь между реальной и номинальной ставкой процента может быть описана следующим уравнением.

$$ 1 + r_t = (1 + i_t) \frac{P_t}{P^e_{t+1}} $$ \hspace{1cm} (1.3)

В период t ожидаемая инфляция равна:

$$ \pi^e_t = \frac{P^e_{t+1} - P_t}{P_t} $$ \hspace{1cm} (1.4)

Из (1.4) путем алгебраических преобразований можно показать, что $\frac{P_t}{P^e_{t+1}} = \frac{1}{1 + \pi^e_t}$. Подставив это выражение в (1.3), получим ожидаемое значение реального процента в году t с учетом ожидаемой инфляции в году $t+1$:

$$ 1 + r^e_t = \frac{1 + i_t}{1 + \pi^e_t} $$ \hspace{1cm} (1.5)

Упрощенная формула связи реальной ставки процента, ожидаемой в году t, с номинальной ставкой процента описывается следующим образом:
Из уравнения (1.6) следует, что реальная ставка процента, которую получит владелец облигации или какого-либо другого актива в году \(t+1 \), равна фактической номинальной ставке, которую, можно получить по данному активу, минус темп прироста ожидаемой инфляции. Поэтому прогнозируемая в будущем реальная процентная ставка зависит от инфляционных ожиданий.

Обычно в современных рыночных экономиках инфляция не нулевая и, следовательно, не нулевая ожидаемая инфляция. Следовательно, как правило, номинальная ставка процента выше реальной ставки.

Инфляционные ожидания зависят от многих факторов: экономической политики, различных внешних шоков: резкого роста цен на нефть или другие ресурсы, изменение обменного курса национальной валюты и т.д. Вариация факторов, формирующих инфляционные ожидания, может быть весьма значительной. Поэтому значение реальной ставки процента при прогнозировании часто является весьма неопределенной величиной.

1.2.2 Влияние ожиданий на приведенный доход

Рассмотрим влияние ожиданий на приведённый к какому-либо моменту времени доход на следующем примере. Пусть экономический субъект приобрел облигацию, приносящую доход \(Q_1 \) через год, доход \(Q_2 \) через два года и т. д., доход \(Q_n \) через \(n \) лет. Определим приведенный к концу первого года доход следующим образом:

\[
P_{PDV} = Q_1 + \frac{Q_2}{(1+r)} + \ldots + \frac{Q_n}{(1+r)^{n-1}},
\]

В соотношении (1.7) на приведенный доход ожидания оказывают двоякое влияние.

1. Сами значения дохода \(Q_1, Q_2, \ldots, Q_n \) в каждом году являются ожидаемыми с определённой вероятностью величинами.

2. В каждом последующем году необходимо проводить дисконтирование с учетом ожидаемой реальной процентной ставки, которая зависит от ожидаемой инфляции и также является неопределенной величиной.
С учетом этих замечаний, более корректное описание величины приведенного дохода для некоторого года \(t \) может быть выполнено следующим образом:

\[
PDV_t = Q_t + \frac{Q_{t+1}}{(1+r_{t+1}^e)} + \frac{Q_{t+2}}{(1+r_{t+1}^e)^2(1+r_{t+2}^e)} + \ldots
\]

(1.8)

где \(r_{t}^e \) - ожидалаемая реальная норма процента в году \(t \); \(Q_{t}^e \) - ожидалаемый доход по облигации в году \(t \).

Из соотношения (1.8) видно: 1) чем выше ожидалаемые в будущем доходы, тем при прочих равных условиях больше приведенный доход; 2) чем выше ожидалаемые в будущем процентные ставки, тем при прочих равных условиях ниже приведенный доход.

Компании оценивают эффективность инвестиционных проектов, приводя (дисконтируя) инвестиции и получаемый доход к единому моменту времени. В случае, если продисконтированный доход превышает продисконтированные инвестиции, принимается положительное решение об инвестировании. В иной ситуации инвестиционный проект отвергается.

Как видно из проведенных нами рассуждений, продисконтированный доход и инвестиции находит под влиянием неопределенных величин – будущих доходов и реальной ставки процента и, следовательно, сами являются неопределенными переменными, зависящими от ожиданий будущих доходов. Следовательно, неопределенные ожидания обусловливают недетерминированность такого важнейшего фактора экономического роста как инвестиции.

1.2.3 Влияние ожиданий на фондовый рынок

Обратимся к анализу влияния ожиданий на фондовый рынок. Рассмотрим ситуацию, когда какой-либо субъект экономики приобретает в году \(t \) акцию по цене \(NP_t^e \). Данный экономический субъект планирует получить дивиденды по этой акции в следующем году и после этого продать ее. Какова будет цена акции, которую он приобретает? Основой для определения цены акции в году \(t \) будет информация об ожидаемых дивидендах по ней и ожидаемой цене продажи в следующем году. Принимая во внимание теорию дисконтирования, ясно, что покупатель акции продисконтирует вышеупомянутые
положительные финансовые потоки в году \(t+1 \) по ожидаемой процентной ставке. Следовательно, цену приобретения акции можно определить следующим образом.

\[
NP_t^* = \frac{ND_{t+1}^e}{(1 + \dot{i}_t^e)} + \frac{NP_{t+1}^{se}}{(1 + \dot{i}_t^e)}
\] \hspace{1cm} (1.9)

где \(ND_{t+1}^e \) - ожидаемые в году \(t+1 \) дивиденды по акции;

\(NP_{t+1}^{se} \) - ожидаемая цена продажи акции в году \(t+1 \);

\(\dot{i}_t^e \) - ожидаемая процентная ставка в году \(t+1 \).

Если покупатель акции решит продать ее не через год, а через два года, то верхняя граница цены приобретения акции может быть определена следующим образом.

\[
NP_t^* = \frac{ND_{t+1}^e}{(1 + \dot{i}_t^e)} + \frac{ND_{t+2}^e}{(1 + \dot{i}_t^e)(1 + \dot{i}_{t+1}^e)} + \frac{NP_{t+2}^{se}}{(1 + \dot{i}_t^e)(1 + \dot{i}_{t+1}^e)(1 + \dot{i}_{t+2}^e)}
\] \hspace{1cm} (1.10)

Отметим, что процентная ставка, по которой будут дисконтироваться денежные потоки, должна быть реальной, то есть учитывать инфляционные ожидания для будущих периодов. Помимо этого, в реальных терминах, то есть в сопоставимых ценах, должны быть исчислены цена акции и дивиденды. Соответствующие реальные показатели обозначены без использования буквы \(N \). С учетом этих замечаний уравнение (1.10) можно преобразовать следующим образом.

\[
P_t^* = \frac{D_{t+1}^e}{(1 + r_{t+1}^e)} + \frac{D_{t+2}^e}{(1 + r_{t+1}^e)(1 + r_{t+2}^e)} + \frac{P_{t+2}^{se}}{(1 + r_{t+1}^e)(1 + r_{t+2}^e)}
\] \hspace{1cm} (1.11)

В общем случае, если покупатель акции захочет ее продать через \(n \) периодов, то верхнюю границу цену ее покупки в общем виде можно определить следующим образом.

\[
P_t^* = \frac{D_{t+1}^e}{(1 + r_{t+1}^e)} + \ldots + \frac{D_{t+n}^e}{(1 + r_{t+1}^e)(1 + r_{t+2}^e)\ldots(1 + r_{t+n}^e)} + \frac{P_{t+n}^{se}}{(1 + r_{t+1}^e)(1 + r_{t+2}^e)\ldots(1 + r_{t+n}^e)}
\] \hspace{1cm} (1.12)

Часто инвесторы не знают, когда они будут продавать приобретенные ими акции. Фактически это означает, что расчет по формуле (1.12) необходимо производить для
бесконечного периода. В этом случае предполагают, что реальная продажная цена акции в последнем году владения ей инвестором будет увеличиваться существенно медленнее, что рост знаменателя последнего слагаемого в уравнении (1.12). Поэтому последнее слагаемое уравнения (1.12) становится бесконечно малой величиной и им пренебрегают. Поэтому формула (1.12) для вычисления цены акции приобретает иной вид:

\[
P_t^* = \frac{D_{t+1}^e}{(1 + r_{t+1}^e)} + \ldots + \frac{D_{t+n}^e}{(1 + r_{t+1}^e)(1 + r_{t+2}^e)(1 + r_{t+n}^e)} + \ldots
\]

Отметим, что в операциях на финансовом рынке большое внимание уделяется неопределенности и связанными с ней ожидаемым рискам в течение периода, когда экономический субъект будет владеть тем или иным финансовым активом. Это – систематические риски, связанные с развитием страны в целом, и несистематические риски, связанные с развитием конкретной фирмы, ценные бумаги которой приобретены. Одним из важнейших способов учета рисков является увеличение ставки дисконтирования на величину так называемой премии за риск. Обозначим премию за риск через \(\mu \). Тогда соотношение (1.13) может быть преобразовано следующим образом.

\[
P_t^* = \frac{D_{t+1}^e}{(1 + r_{t+1}^e + \mu)} + \ldots + \frac{D_{t+n}^e}{(1 + r_{t+1}^e + \mu)(1 + r_{t+2}^e + \mu)(1 + r_{t+n}^e + \mu)} + \ldots
\]

Чем больше премия за риск, тем за меньшую цену при прочих равных условиях участники фондового рынка готовы приобретать те или иные акции. Иначе говоря, ожидания повышенных рисков, связанных с развитием какой-либо компании, действует в направлении снижения цены ее активов.

Фондовый рынок особенно чувствителен к ожиданиям и связанной с ними неопределенности. Изменение цен активов на финансовых рынках, происходящее под влиянием вариации ожиданий, приводит к снижению или повышению капитализации отдельных компаний и фондового рынка в целом. Изменение капитализации в ряде случаев оказывает воздействие на развитие компаний, на динамику их инвестиций и в более отдаленной перспективе – на динамику основного капитала и производства. Вариация инвестиций, основного капитала и производства отдельных компаний, суммируясь, оказывает воздействие на темпы роста макроэкономических показателей. Следовательно, неопределенность ожиданий в существенной мере формирует недетерминированность
фондового рынка. Неопределенность динамики показателей фондового рынка, в свою очередь, является одним из факторов, предопределяющих недетерминированность темпов роста основных макроэкономических индикаторов.

1.2.4 Влияние ожиданий на потребление

Опишем потребление как функцию от трудового дохода по налогообложению и общего благосостояния экономического субъекта.

\[C_t = C_t(YLD_t, TW_t) \]

где \(TW_t \) - общее благосостояние экономического субъекта в году \(t \), \(YLD_t \) - трудовой доход после налогообложения.

Знак плюс под формулой означает, что потребление связано положительной зависимостью с трудовым доходом после налогообложения и общим благосостоянием в году \(t \).

Под общим благосостоянием экономического субъекта понимается стоимость имеющейся у него недвижимости, финансовых активов (акций, облигаций и т.д.) и приведенной стоимости его ожидаемого будущего дохода в течение рабочего периода жизни.

Рассмотрим, как ожидания влияют на потребительские расходы.

1. При определении приведенной стоимости своего ожидаемого будущего дохода индивидуум принимает во внимание ожидания его будущего трудового дохода, ожидаемые реальные процентные ставки и ожидаемые ставки налогообложения.

2. Цены активов, которыми располагает индивидуум, зависят от ожидаемых будущих дивидендов по акциям, ожидаемых процентных ставок, ожидаемых рисков.

Поясним последнюю зависимость более подробно. Потребление индивидуума в настоящее время связано со стоимостью активов, которыми он располагает, так как в будущем эти активы (например, ценные бумаги) могут принести доход в виде дивидендов,

4 Под трудовым доходом понимается доход, получаемый индивидуумом от трудовой деятельности. В него не включаются доходы от активов – дивиденды по акциям, проценты по ценным бумагам и т.д.
выплат по облигациям или доход от продажи этих активов. Все это в совокупности повлияет на будущие доходы индивидуума и в какой-то степени оказывает воздействие на его поведение в потреблении в текущий период времени.

На потребление влияют и другие виды ожиданий. Например, настроение многих потребителей может быть позитивным в связи с приходом к власти политического лидера, пользующегося большой поддержкой в обществе и обещающего обеспечить стабильный экономический рост.

В этом случае многие потребители настроены оптимистично относительно своих будущих доходов и склонны к относительно большему потреблению. Вследствие этого коэффициент предельной склонности к потреблению возрастает с величины c до c^e и увеличивается модифицированный экономический мультипликатор с $\frac{c}{\alpha}$ до $\frac{c^e}{\alpha}$, где $\overline{\alpha} = \frac{1}{1-c^e(1-t)}$, $\overline{\alpha}^e = \frac{1}{1-c^e*(1-t)}$, t – обобщенная налоговая ставка в экономике.

Неопределенность ожиданий в данном случае воздействует на потребление и является важнейшим фактором, формирующим его недетерминированность в прогнозируемом периоде.

1.2.5 Влияние ожиданий на инвестиции

Проанализируем влияние ожиданий на инвестиции. Для этого рассмотрим в принципиальном плане подход к принятию компаниями инвестиционных решений.

В результате инвестиций компания ожидает получить определенную прибыль в течение некоторого периода времени. В упрощенной форме процедуру оценки экономической эффективности инвестиционного проекта можно охарактеризовать следующим образом.

Фирма сравнивает приведенную к определенному моменту времени сумму положительных денежных потоков с приведенной к тому же моменту времени суммой инвестиций. Если приведенные положительные денежные потоки больше приведенных инвестиций, то компания принимает решение об инвестициях. Для простоты в дальнейшем будем рассматривать только один вид затрат на производство продукции. Величину этих затрат на единицу произведенной продукции обозначим через d. Предполагаем, что эта величина остается стабильной на протяжении анализируемого периода.
При принятых предположениях величина положительных денежных потоков в году \(t \) - \(\Pi_t \) определяется следующим образом.

\[
\Pi_t = (1-d) \cdot Y_t
\]
(1.16)

Инвестиции являются функцией от текущих положительных денежных потоков, служащих источником их финансирования, и приведенных к определенному моменту времени будущих денежных потоков, которые компания получит от их вложения. Обозначим суммарную величину приведенных к году \(t \) положительных денежных потоков, которые компания ожидает получить от инвестиций, через \(PD\Pi^e_t \). Тогда функциональная зависимость между инвестициями и \(PD\Pi^e_t \) в самом общем виде может быть записана следующим образом.

\[
I_t = I(\Pi_t, PD\Pi^e_t)
\]
(1.17)

Чем больше величина приведенных положительных денежных потоков, полученных в результате инвестиций, тем выше размер самих инвестиций. Чем выше ожидаемые в будущем нормы процента, тем при прочих равных условиях ниже инвестиции.

С учетом соотношения (67), суммарная величина приведенных к году \(t \) положительных денежных потоков \(PD\Pi_t \), которую компания планирует получить от инвестиций, определяется с использованием следующего уравнения.

\[
PD\Pi^e_t = \frac{(1-d) \cdot Y^e_1}{(1 + r^e_{t+1})} + \frac{(1-d) \cdot Y^e_2}{(1 + r^e_{t+1}) \cdot (1 + r^e_{t+2})} + ... + \frac{(1-d) \cdot Y^e_n}{(1 + r^e_{t+1}) \cdot ... \cdot (1 + r^e_{t+n})}
\]
(1.18)

Подставим соотношения (1.18) и (1.16) в функцию (1.17) и получим развернутое соотношение для определения инвестиций.

\[
I_t = I \left[(1 - d) \cdot Y_t \cdot \left(\frac{(1-d) \cdot Y^e_1}{(1 + r^e_{t+1})} + \frac{(1-d) \cdot Y^e_2}{(1 + r^e_{t+1}) \cdot (1 + r^e_{t+2})} + ... + \frac{(1-d) \cdot Y^e_n}{(1 + r^e_{t+1}) \cdot ... \cdot (1 + r^e_{t+n})} \right) \right]
\]
(1.19)
Соотношение (1.19) хорошо иллюстрирует то обстоятельство, что инвестиции связаны положительной зависимостью с текущим и ожидаемыми объемами производства и отрицательной зависимостью с величиной удельных затрат и ожидаемыми значениями реальной ставки процента. Величина затрат и норма процента являются важнейшими параметрами, определяющими издержки использования капитала \(rC \). С учетом этого обстоятельства, обобщенно можно сказать, что инвестиции представляют собой функцию от текущего дохода, ожидаемой величины издержек использования капитала \(rC^e \), ожидаемой величины дохода и, как следствие, ожидаемой величины прибыли.

С учетом проведенного ранее анализа обобщенно можно сказать, что на макро уровне инвестиции представляют собой функцию от текущей реальной нормы процента и значений ожидаемых реальных норм процента, текущего и ожидаемых значений ВВП и удельных затрат на производство продукции.

Следовательно, степень неопределенности ожидаемых значений дохода, нормы процента и затрат является важным фактором, влияющим на неопределенность инвестиций в прогнозируемом периоде.

1.2.6 Влияние ожиданий на динамику производства и экономическую политику: анализ с использованием модифицированной модели IS-LM⁵

Одним из наиболее распространенных способов описания равновесного состояния экономической системы является модель IS-LM, впервые предложенная Джоном Хиксом [51]. С другой стороны, динамические модели межотраслевого баланса (ДММБ) также могут быть истолкованы как способ описания общего экономического равновесия в динамической постановке (см., например, [6, с.59], [8, с. 540]). В связи с этим модель IS-LM может рассматриваться как весьма упрощенный способ описания общего экономического равновесия, находящий свое более развитое воплощение, в частности, в ДММБ с монетарным блоком [6]. Следовательно, модификацию модели IS-LM в направлении отображения ожиданий и связанной с ними неопределенности экономической системы можно рассматривать как теоретическую предпосылку совершенствования ДММБ с монетарным блоком в сторону отражения неопределенности, обусловленной большой неустойчивостью ожиданий экономических субъектов, которые, в свою очередь, отчасти предопределяют стохастический характер развития экономической системы в целом. В этом

⁵ Здесь приводится вариант описания модели IS-LM с учетом ожиданий, близкий к версии, изложенной в работе О. Бланшарда [49].
состоят связь данного подраздела с приведенными ниже построениями и, в частности, с разработкой ДММБ с монетарным блоком с нечетким описанием параметров (см. подраздел 11.1 данной монографии).

С использованием модели IS-LM обобщим проведенный в двух предыдущих пунктах анализ. На рисунке 1.3 в схематической форме показано влияние ожиданий на потребление и инвестиции. Увеличение ожидаемого дохода после налогообложения и снижение ожидаемых в будущем реальных ставок процента приводит к росту ожидаемого дисконтированного трудового дохода. Рост ожидаемых дивидендов и снижение реальной ставки процента приводит к увеличению ожидаемого значения дисконтированного богатства, воплощенного в финансовых и материальных активах. Все это вместе приводит изменению поведения домашних хозяйств в направлении увеличения текущего потребления.

Увеличение ожидаемой в будущем прибыли и снижение реальной нормы процента имеет своим следствием рост ожидаемой приведенной прибыли после налогообложения, что положительно влияет на инвестиции.

Потребление и инвестиции являются важнейшими составляющими совокупного спроса. Следовательно, вариация ожидаемых значений вышеперечисленных экономических переменных в конечном итоге влияет на текущий совокупный спрос. Отразим это обстоятельство в модели IS-LM.

В уравнении линии IS ожидаемые переменные повлияют на величину независимых от текущего дохода и текущей нормы процента затрат. Обозначим модифицированное значение независимых затрат как \bar{A}. С учетом ожиданий эта величина определяется следующим образом.

$$
\bar{A} = C(YLD^e, r^e, t^e) + I(Y^e, r^e, d) + TR + G
$$

В соотношении (1.20) знак плюс означает положительной влияние, а знак минус – отрицательное влияние на потребление или инвестиции соответствующих переменных.

Как было показано ранее, номинальные и реальные ставки отличаются на величину ожидаемой инфляции. Для простоты мы предположим, что ожидаемая инфляция равна нулю. В этом случае в модели IS-LM номинальная и реальная процентная ставки совпадают.

С учетом соотношения (1.20) модифицированное с учетом ожиданий уравнение линии IS записывается следующим образом.
\[Y = \alpha^* (\bar{A} - b^* j) \] (1.21),

где \(b \) – коэффициент, характеризующий чувствительность инвестиций к изменению нормы процента в экономике.

Последствия учета ожиданий для геометрической интерпретации функции \(IS \) показаны на рисунке 1.4. Учет ожиданий приводит к тому, что линия \(IS \) становится более крутою. На рисунке 1.4 линия \(IS_1 \) построена без учета ожиданий, а линия \(IS_2 \) – с их отражением. Иначе говоря, зависимость равновесного дохода на рынке товаров от значения текущей ставки процента в случае учета ожиданий уменьшается.

Действительно, снижение текущей процентной ставки, например, с уровня \(i_1 \) до уровня \(i_2 \) для линии \(IS_2 \) приводит лишь к незначительному изменению дохода от уровня \(Y_1 \) до \(Y_2 \). Почему?

Ранее мы показали, что вариация только лишь текущей процентной ставки при неизменных ожидаемых ставках процента не оказывает значительного воздействия на величину приведенного положительного денежного потока и, как следствие, на объем инвестиций в текущем периоде. Поэтому при неизменных значениях ожидаемой в будущем прибыли и реальной нормы процента вариация текущей ставки процента на инвестиции влияет не существенно.

Крутой наклон линии \(IS_2 \) указывает на то, что мультипликатор \(\bar{\alpha} \) в уравнении (1.21) достаточно мал. Значение мультипликатора определяется коэффициентом предельной склонности к потреблению, показывающим максимальное изменение потребления при увеличении текущего дохода на единицу. Однако, изменение текущего дохода при неизменных значениях ожидаемого в будущем дохода не оказывает значительного воздействия потребление, что объясняет малое значение \(\bar{\alpha} \).
Ожидаемый в будущем трудовой доход после налогообложения

Ожидаемые в будущем реальные дивиденды

Ожидаемая реальная норма процента

Будущая прибыль после налогообложения

Ожидаемая приведенная прибыль после налогообложения

Потребление

Богатство, воплощенное в финансовых и материальных активах

Инвестиции

Рисунок 1.3. Влияние ожиданий на потребление и инвестиции
Рисунок 1.4. Учет ожиданий приводит линию IS в более крутое положение

Мы объяснили, почему изменение текущей процентной ставки не оказывает существенного воздействия на совокупный спрос. Следствием этого является незначительная вариация равновесного дохода на рынке товаров при изменении текущей нормы процента.

Таким образом, отображение в макроэкономическом анализе ожиданий позволяет объяснить слабую связь инвестиций с текущей нормой процента, что статистически подтверждается для экономики многих стран.

Линия IS_2 построена при заданных значениях параметров, определяющих величину независимых затрат \(\bar{A} \) и значение мультипликатора \(\bar{\alpha} \). Влияние изменения этих параметров, относящихся к текущему периоду, рассматривалось нами ранее. В данном пункте сосредоточимся на влиянии ожидаемых переменных на положение линии IS на графике.

Рисунок 1.5. Влияние изменения значения ожидаемых переменных на положение линии IS на графике.

Увеличение ожидаемых будущих значений ВВП приводит к большей уверенности домашних хозяйств в будущем и стимулирует потребление, не зависящее от текущего дохода.
Большее значение объемов ожидаемых производства, как правило, означает большую прибыль в будущем и стимулирует рост инвестиций, не зависящих от текущего значение дохода. Оба этих фактора приводят к параллельному сдвигу линии IS из положения IS₁ в положение IS₂ (см. рисунок 1.5).

Рост ожидаемых реальных ставок процента приводит к снижению инвестиций, не зависящих от текущего дохода, так как уменьшают значение ожидаемого положительного денежного потока, получаемого компаниями от реализации различных инвестиционных проектов. Уменьшение независимых от текущего дохода инвестиций при прочих равных условиях приводит к снижению величины независимых затрат \bar{A} и параллельному сдвигу линии IS из положения IS₁ в положение IS₂ (см. рисунок 1.5).

Рост ожидаемых в будущем ставок налогообложения приводит к снижению ожидаемого в будущем дохода после налогообложения и ожидаемых дивидендов, которые домашние хозяйства могут получить по национальным в их собственности финансовым активам. Это заставляет потребителей вести себя более осторожно в своих затратах и негативно отражается на потреблении, не зависимом от текущего значения дохода. В результате снижается величина независимых затрат \bar{A} и линия IS сдвигается параллельно влево из положения IS₁ в положение IS₂ (см. рисунок 1.5).

Обратимся к линии LM. Построение ее уравнения связано с зависимостью реального спроса на деньги от объема текущих сделок экономических субъектов и, следовательно, от текущего дохода, а также от текущей нормы процента в экономике. Запишем уравнение линии LM.

$$
\frac{M}{P} = L = kY - h \cdot i
$$

где $\frac{M}{P}$ – реальное предложение денег, L – реальный спрос на деньги, k – коэффициент, характеризующий чувствительность спроса на деньги к изменению дохода, h – коэффициент, характеризующий чувствительность спроса на деньги к изменению нормы процента, Y – доход.

Появляется ли изменение будущей нормы процента или будущего дохода на текущий спрос на реальные деньги?

Ожидания будущего роста процентных ставок не смогут заставить уменьшить денежный запас экономических субъектов в текущий момент времени. Если они сократят текущий денежный запас, то ничего не выиграют в настоящий момент времени, но могут понести потери от того, что, например, в нужный момент времени не смогут оплатить сделку наличными и понесут из-за этого потери.
Аналогично, нет смысла увеличивать денежный запас в ожидании роста будущих сделок, так как это не принесет дополнительной выгоды в текущий момент времени. Наоборот, не нужные для текущих сделок наличные деньги, будучи не вложенными в активы, приносящие проценты, приведут к снижению текущих доходов экономического субъекта, так как он не дополнит проценты, которые мог бы получить в случае, если та же сумма была вложена в облигации или на депозит в банке.

Поэтому уравнение (1.22), описывающие линию \(LM \), остается неизменным по сравнению со стандартной моделью \(IS-LM \).

Модифицированная с учетом ожиданий модель \(IS-LM \) описывается уравнениями (1.21) и (1.22). В модели мы предполагаем, что текущая и ожидаемая инфляция равны нулю. В связи с этим в модели \(IS-LM \) мы не делаем различия между номинальной и реальной процентной ставкой. Нас будет интересовать лишь изменение текущей и ожидаемой процентной ставки.

С учетом неопределенности, связанной с вариацией ожиданий и других макроэкономических факторов, окрестность, достаточно близкая к точке одновременного равновесия в модели \(IS-LM \), может быть достигнута лишь с определенной вероятностью.

1.2.7 Влияние экономической политики на производство и норму процента в модели \(IS-LM \) с ожиданиями

Предположим, что центральный банк скупает часть государственных ценных бумаг и увеличивает предложение денег. В модели \(IS-LM \) линия \(LM \) сдвигается вправо из положения \(LM_1 \) в положение \(LM_2 \) (см. рисунок 1.6).

В результате, равновесной точкой становится \(E_2 \), с более высокой величиной дохода и уменьшенной относительно исходной нормой процента. Однако, в связи с тем, что линия \(IS \) имеет большой наклон относительно оси абсцисс, увеличение равновесного дохода от исходной величины \(Y_1 \) до \(Y_2 \) незначительно. Изменение текущей нормы процента без вариации ожидаемых процентных ставок оказывает незначительное влияние на совокупный спрос и, как следствие, на равновесный объем производства.

Однако уместно задаться вопросом о том, насколько вероятно то, что при изменении кредитно-денежной политики не изменятся ожидания экономических субъектов? По крайней мере можно утверждать, что при прочих равных условиях существует определенная вероятность того, что при снижении центральным банком нормы процента в экономике и росте производства, обусловленном этим уменьшением процентной ставки, экономические субъекты изменят свои ожидания относительно будущего значения процентной ставки \(i^e \) в сторону ее уменьшения и
равновесного дохода Y^e в сторону его увеличения. Как мы показали выше, в этом случае увеличатся расходы экономических субъектов, что приведет к сдвигу линии IS вправо из положения IS_1 в положение IS_2. После этого сдвига равновесной точкой будет E_3. В данной точке имеет место намного более значительное увеличение равновесного дохода до величины Y_3.

Рисунок 1.6. Последствия монетарной экспансии в модели IS-LM с ожиданиями.

Следовательно, если прямое воздействие монетарной экспансии на производство может быть незначительно, то при изменении ожиданий воздействие на экономику может оказаться намного более существенным.

Следовательно, эффективность воздействия экономической политики на экономику в существенной степени обусловлена тем, насколько значительно ее вариация повлияет на ожидания.

Необходимо отметить следующее. Если изменение в экономической политике, например, в кредитно-денежной политике, являются ожидаемыми для экономических субъектов, то их ожидания относительно будущих параметров экономической системы не меняются и в этом случае воздействие экономической политики на развитие экономики незначительно или вообще отсутствует. Это происходит потому, что домашние хозяйства и фирмы не меняют свои решения относительно текущих объемов производства, потребления, сбережений.

Если вариация экономической политики оказывается неожиданной для большинства фирм и домашних хозяйств, то это приводит к изменениям их ожиданий и к более существенному воздействию экономической политики на экономику. Например, неожиданное увеличение предложения денег центральным банком приводит к уменьшению ожидаемых значений нормы
процента и росту ожидаемых значений ВВП. В результате, затраты домашних хозяйств и фирм возрастают и происходит увеличение объема текущего производства.

Если ожидания столь существенны для оценки последствий использования инструментов экономической политики, то можно ли успешно прогнозировать развитие экономической системы? В целом ответ на этот вопрос является положительным, так как ожидания формируются не произвольно, а под воздействием имеющейся у экономических субъектов информации.

При принятии решений об инвестициях многие компании проводят тщательный анализ и прогнозирование развития рынка, финансовых показателей планируемого к реализации проекта. Крупные фирмы имеют аналитические подразделения, занимающиеся прогнозированием макроэкономических и отраслевых показателей. Однако большинство экономических субъектов опирается на результаты экономических прогнозов косвенно, используя для формирования своих ожиданий будущих значений экономических переменных публикации в средствах массовой информации. Последние, в свою очередь, опираются на результаты прогнозов, выполняемых государственными и частными исследовательскими центрами.

1.2.8 Последствия уменьшения государственных расходов

Учет ожиданий может привести к неожиданным выводам в макроэкономическом анализе. Рассмотрим ситуацию сокращения государственных расходов с целью уменьшения бюджетного дефицита.

В стандартной модели IS-LM краткосрочные последствия сокращения государственных расходов сводятся к сдвигу линии IS влево из положения IS₁ в положение IS₂ (см. рисунок 1.7). В результате уменьшается равновесная ставка процента и равновесный ВВП. В долгосрочном плане снижение процентной ставки может привести к увеличению инвестиций и, как следствие ускорению экономического роста.

![Diagram](attachment:image.png)
Рисунок 1.7. Под влиянием ожиданий, снижение государственных расходов может привести к макроэкономическим последствиям, противоположным тем, что показывает стандартная модель IS-LM.

Сокращение государственных расходов в текущем периоде может повлиять на ожидания экономических субъектов относительно значений будущего ВВП и нормы процента. В частности, уменьшение текущей нормы процента в экономике может повлиять в направлении снижения ожидаемых в будущем значений нормы процента ($\Delta i^e < 0$). Уменьшение ожидаемой нормы процента приведет к увеличению значений ожидаемого в будущем ВВП ($\Delta Y^e > 0$). Оба этих фактора позитивно повлияют на текущие расходы и, в конечном итоге, на текущий доход. Линия IS сдвинется из положения $I S_1$ в положение $I S_3$ (см. рисунок 1.7).

Остаётся открытым вопрос о том, какой из эффектов будет сильнее: краткосрочные последствия, приводящие к снижению равновесного ВВП, или влияние ожиданий, приводящее к его росту.

Следовательно, введение в анализ ожиданий позволило получить вывод о том, что сокращение государственных расходов может привести к увеличению равновесного ВВП не только в долгосрочном, но и в краткосрочном плане. Поэтому учет ожиданий в большей степени демонстрирует неопределенность последствий тех или иных решений в области экономической политики.

1.2.9 Ожидания в открытой экономике

Для многих видов производства большую роль играют ожидания изменения обменного курса национальной валюты. Например, для бизнеса, связанного с экспортом и (или) импортом товаров и услуг. Если ожидается удешевление валюты данной страны, то это может положительно повлиять на динамику производства в экспортноориентированных отраслях и негативно повлиять на импорт. С другой стороны, удешевление национальной валюты какой-либо страны приводит к обесценению активов, номинированных в данной валюте, что может негативно повлиять на динамику инвестиций в экономике.

В модели Манделла – Флеминга, представляющей собой модификацию модели IS-LM для открытой экономики, равновесный доход в экономической системе определяется следующим образом.
где \(RE \) – значение реального эффективного обменного курса национальной валюты, \(m \) – коэффициент предельной склонности к импорту, \(\bar{X} \) - экспорт с учетом влияния на него изменения доходов в остальном мире.

Значение реального эффективного обменного курса определяется следующим соотношением.

\[
RE = e \cdot \frac{\pi}{\pi_f}
\]

где \(\pi \), \(\pi_f \) – темп роста цен на внутреннем рынке и за рубежом соответственно, а \(e \) – многосторонний обменный курс национальной валюты.

Из соотношения (1.23) видно, что ожидаемое значение реального эффективного обменного курса является важнейшим параметром, оказывающим воздействие на равновесный ВВП в случае, когда в анализе учитываются внешнеэкономические связи.

Перепишем соотношение (1.24) в терминах ожидаемых переменных.

\[
RE^e = e^e \cdot \frac{\pi_f}{\pi^e}
\]

В соотношении (1.25) все переменные имеют тот же смысл, что и ранее, но это ожидаемые значения соответствующих переменных.

Рассмотрим конкретный пример влияния ожиданий, связанных с изменением экономической политики, на обменный курс национальной валюты и в последующем на другие макроэкономические переменные.

Предположим, что многие экономические субъекты ожидают увеличение предложения денег, инициируемое центральным банком страны. В результате роста предложения национальной валюты можно ожидать ее последующего обесценения. Следовательно, инвесторы ожидают, что номинированные в национальной валюте (например, в случае России - в рублях) активы могут снижаться в цене, измеренной в валютах других стран (доллар, евро, фунт стерлингов и т.д.). Обесцениваться будут и получаемые по активам данной страны проценты. Поэтому на основе ожиданий монетарной экспансии инвесторы будут продавать активы, номинированные в валюте данной страны и покупать зарубежные активы. Цены на активы, номинированные в валюте
данной страны, снизятся, а цены зарубежных активов возрастут. Соответственно, процентные ставки в данной стране увеличатся (см. рисунок 1.8).

На рисунке 1.8 экономика первоначально находится в состоянии внутреннего и внешнего равновесия в точке E_1. Почему произойдет сдвиг линии IS на графике из положения IS_1 в положение IS_2? При продаже номинированных в национальной валюте активов инвесторы получают валюту данной страны (например, рубли). Для покупки иностранных активов требуется продать рубли и купить иностранную валюту (девизы). Предложение рублей растет, спрос на иностранную валюту увеличивается. В результате, еще до проведения монетарной экспансии начинается обесценение национальной валюты, что стимулирует экспорт. Вследствие этого чистый экспорт возрастает, что приводит к параллельному сдвигу линии IS вправо.

Процесс сдвига IS будет продолжаться до тех пор, пока процентные ставки по рублевым активам, пересчитанные по ожидаемому в следующем периоде обменному курсу, не сравняются с процентными ставками по зарубежным активам. В математической форме соотношение между процентной ставкой внутри страны и за рубежом описывается с помощью приближенного уравнения процентного арбитража.

6 На рисунке 1.8 i_f — норма процента на международных финансовых рынках, луч $BP=0$ характеризует состояние экономики, когда сальдо платежного баланса равно нулю.
7 Более подробно см. [40], гл.10, 20.
где \(i \) – процентная ставка внутри страны, \(i_f \) – процентная ставка за рубежом, \(e_{e_{1}} \) - ожидаемый многосторонний обменный курс в следующем периоде времени, \(e \) - многосторонний обменный курс в текущем периоде времени.

Уравнение (1.26) показывает, что внутренняя процентная ставка должна равняться сумме процентной ставки за рубежом и темпа обесценения обменного курса национальной валюты.

Следовательно, ожидание обесценения национальной валюты в будущем приводит к росту процентной ставки и равновесного дохода уже в текущем периоде.

Проведенный в данном пункте анализ показывают, что ожидаемая инфляция в данной стране и за рубежом, ожидания изменения многостороннего обменного курса национальной валюты, являющиеся результатом ожиданий изменений в экономической политике, влияют на динамику ВВП и других макроэкономических показателей.

Изменения процентных ставок приводят к притоку или оттоку капитала в ту или иную страну. Например, в ожидании повышения процентной ставки по ценным бумагам федерального казначейства США в эту страну может усилиться приток капитала из других стран в надежде получить больший процент по сравнению с другими финансовыми рынками. Приток капитала на фондовый рынок страны может стимулировать деловую активность, так как компании через размещение своих ценных бумаг на бирже имеют возможность получить дополнительные инвестиции для развития. Помимо этого, приток капитала в страну способствует достижению сбалансированности платежного баланса, обеспечивая положительное сальдо по счету операций с капиталом и финансовыми инструментами. Сбалансированный платежный баланс в совокупности с ростом инвестиций являются важнейшими факторами макроэкономической стабильности, что, в свою очередь, способствует более высоким темпам экономического развития. Это – еще один аспект влияния ожиданий на макроэкономическую динамику в открытой экономике.

Неопределенность обменного курса национальной валюты в прогнозируемом периоде, связанная с неопределенностью влияющих на него ожиданий, является еще одним подтверждением важности ожиданий при описании недетерминированности экономической системы.

Введение ожиданий в экономический анализ существенно улучшает адекватность описания реальных экономических процессов. Учет ожиданий и неопределенности в их изменении позволяет ответить на вопрос о неожиданных последствиях, которые периодически возникают в результате применения стандартных инструментов экономической политики. Следовательно, отображение ожиданий при прогнозировании развития экономической системы позволяет более полно отобразить фактор неопределенности в экономике по сравнению с анализом без их учета. Для комплексной оценки последствий использования различных инструментов экономической политики необходимо оценить вариацию ожиданий в результате их применения. Только после этого можно с большой правдоподобностью определить направления изменения макроэкономических переменных.

Отражение влияния ожиданий и связанной с их вариацией неопределенности на экономическую динамику в макро и межотраслевых моделях позволяет более адекватно описать влияние неопределенности на развитие рыночной экономической системы. В результате, повышается степень достоверности получаемых прогнозных вариантов развития экономической системы. Остается, однако, открытым вопрос разработки методов адекватной оценки ожиданий.

2 Математическое обоснование расчетов по оптимизационной межотраслевой модели с нечеткими параметрами

Пусть \(X \) есть некоторая совокупность и \(A \subseteq X \) - некоторое множество из \(X \). Функцией принадлежности множества \(A \) называется отображение \(\chi_A: X \rightarrow \{0,1\} \), определенное формулой

\[
\chi_A(x) = \begin{cases}
1, & \text{если } x \in A \\
0, & \text{если } x \notin A.
\end{cases}
\]

В дальнейшем множества с такими функциями принадлежности, принимающими два значения 0 или 1, будут называться четкими.

Все нечетко-множественные методы экономических исследований базируются на понятии нечеткого множества.

2.1 Нечеткие множества

Пусть \(I = [0;1] \) - отрезок вещественной оси, \(I^X \) - пространство всех отображений \(\chi: X \rightarrow [0,1] \) из множества \(X \) в отрезок \(I = [0,1] \).
Определение 2.1. По аналогии с четкими множествами всякое отображение $\chi \in I^X$ будем называть функцией принадлежности нечеткого множества A_χ, содержащегося в X [68]. Для всякого $x \in X$ значение $\chi(x)$ интерпретируется как степень принадлежности точки x к множеству A_χ, т.е. степень правдоподобности высказывания $x \in A_\chi$.

В рассуждениях обычно используется следующая (или похожая) система терминов. Если $\chi(x)=0$, то высказывание $x \in A_\chi$ неправдоподобно. Если $\chi(x)=1$, то высказывание $x \in A_\chi$ правдоподобно. Если $0<\chi(x)<1$, то высказывание $x \in A_\chi$ имеет степень правдоподобия $\chi(x)$. Если $\chi(x)<\chi(y)$, то высказывание $x \in A_\chi$ менее правдоподобно, чем высказывание $y \in A_\chi$. Эта терминология и будет использоваться нами далее.

В тексте далее будем использовать обозначения: $F(X)$ - множество четких подмножеств X; $\Xi(X)$ - множество нечетких подмножеств X. Ясно, что выполнено включения $F(X) \subseteq \Xi(X)$, поскольку $\{0;1\}^X \subseteq I^X$.

Определим операции над нечеткими множествами, определяя функции принадлежности результирующих множеств.

$\overline{\chi}(x)=1-\chi(x)$ - функция принадлежности дополнения,

$\chi \cap \mu(x)=\min\{\chi(x),\mu(x)\}$ - функция принадлежности пересечения,

$\chi \cup \mu(x)=\max\{\chi(x),\mu(x)\}$ - функция принадлежности объединения,

$\chi \times \mu(x,y)=\min\{\chi(x),\mu(y)\}$ - функция принадлежности декарта произведения нечетких множеств.

Пусть X есть пространство с мерой, определяемой на некоторой σ-алгебре A. Обозначим через B σ-алгебру Борелевских множеств на отрезке $I=[0,1]$ и через $\xi(A,B)$ - множество измеримых отображений $\chi: (X,A) \rightarrow (I,B)$. Всякую функцию $\chi \in \xi(A,B)$ назовем функцией принадлежности измеримого нечеткого множества из X.

В теории нечетких множеств широко используется понятие сечения нечеткого множества.

Определение 2.2. Пусть $\chi \in \xi(A,B)$. Четким α-сечением (или просто α-сечением) множества A_χ назовем измеримое (четкое) множество

$$A_\alpha = \{ x \in X \mid \chi(x) \geq \alpha \}.$$
Ясно, что для всякого $\chi \in \xi(A,B)$ нулевое сечение A_0 есть все множество X, т.е. $A_0 = X$. Далее, точечно-множественное отображение $f(\alpha) = A_\alpha$ монотонно убывающее, т.е. справедлива импликация $\alpha \leq \beta \Rightarrow A_\alpha \supseteq A_\beta$.

Распространение классической меры на нечеткие множества выполнено Заде в работе [69] по следующей схеме. Пусть (x, λ) есть (классическое) пространство с мерой. Отображение $\mu : \xi(A,B) \rightarrow R_+$, определенное формулой $\mu(A_\lambda) = \int_X \chi d\lambda$, позволяет распространить классическую меру λ на нечеткие измеримые множества пространства X.

Определение 2.3. Отображение $\mu : R^n \times R^n \rightarrow [0,1]$ называется нечетким порядком на R^n, если оно удовлетворяет следующим условиям (см. [6]):

1. $(\forall x \in R^n) \mu(x,x) > 0$, (Рефлексивность)
2. $\mu(x,y) > 0 & \mu(y,x) > 0 \rightarrow x = y$, (Антисимметричность)
3. $\mu(x,z) \geq \min\{\mu(x,y),\mu(y,z)\}$, (Транзитивность)

Пусть $\{K_\alpha \subseteq R^n, 0 \leq \alpha \leq 1\}$ - семейство выпуклых замкнутых конусов с вершинами в начале координат, таких, что справедлива импликация $\alpha_1 \leq \alpha_2 \Rightarrow K_{\alpha_1} \supseteq K_{\alpha_2}$, причем предполагается, что $K_1 \neq \emptyset$. Нечеткое отношение порядка определяется в этом случае следующим образом

$$(\forall x, y \in R^n) \mu(x,y) = \sup\{\alpha | y \in x + K_\alpha\}.$$

Действительно, $$(\forall x \in R^n \forall \alpha) x \in x + K_\alpha \rightarrow \mu(x,x) = 1$$, откуда следует рефлексивность. Если $y \in x + K_\alpha$ и $x \in y + K_\beta$, причем $\alpha, \beta > 0$, то возможен единственный вариант: x является вершиной конуса $y + K_\beta$, y является вершиной конуса $x + K_\alpha$. Это эквивалентно равенству $x = y$, которое означает антисимметричность. Далее, если $\mu(x,y) = \alpha, \mu(y,z) = \beta (\alpha \leq \beta)$, то по определению μ имеем $y \in x + K_\alpha, z \in y + K_\beta$. Следовательно, $z \in x + K_\alpha$, или $\mu(x,z) \geq \alpha$, откуда следует, что отношение μ есть нечеткий порядок на R^n.

2.2 Нечеткая оптимизация

Широкую область приложений в экономических исследованиях имеет нечеткая оптимизация (см. [64, 65]). Различают три типа задач нечеткой оптимизации: оптимизация с четкой целью и нечеткими ограничениями; оптимизация с нечеткой целью и четкими
ограничениями; оптимизация с нечеткой целью и нечеткими ограничениями. В данном разделе приводятся основные понятия данного подхода к исследованиям.

Обозначения (см. [65]).

Пусть ψ - четкое множество вещественных функций $f : R^n \rightarrow R$. Определим на R^n частичный порядок \succ_{ψ} так, что $x \succ_{\psi} y$ тогда и только тогда, когда справедливо высказывание

$$(\forall f \in \psi) f(x) \geq f(y).$$

Задачу многоцелевой оптимизации, заключающуюся в максимизации некоторого набора функций $f \in \psi$ на множестве $\Omega \subseteq R^n$, будем обозначать

$$\max_{x \in \Omega} f(x).$$

Решением этой задачи будем считать множество максимальных элементов, определяемых частичным порядком \succ_{ψ} на Ω (множество точек, оптимальных по Парато).

Если множество допустимых состояний Ω или множество целевых функций ψ являются нечеткими, то соответствующую задачу максимизации будем обозначать

$$\max_{f \in \psi} f(x).$$

В нечеткой оптимизации выделяются два аспекта: нечеткие ограничения и нечеткая цель.

2.3 Оптимизация с нечеткими ограничениями

Обозначим через $\mathcal{Z}(R^n)$ - множество нечетких подмножеств из R^n.

Пусть $f : R^n \rightarrow R$, $\Omega \in \mathcal{Z}(R^n)$. Рассматривается задача нечеткой оптимизации

$$\max_{\psi \in \Omega} f(x).$$

(2.1)

Рассмотрим парамтермическое семейство классических задач математического программирования

$$\max_{x \in \Omega_{\psi}} f(x),$$

(2.2)
где $\Omega_a = \{x \in \mathbb{R}^n \mid x_\Omega(x) \geq a\}$ есть α-сечение Ω. Обозначим через Z_a множество решений задачи (2.2) и полагим $Z = \bigcup_{a \in [0,1]} Z_a$.

Определение 4. Отображение $\chi_Z : \mathbb{R}^n \to [0,1]$, определенное формулой

$$
\chi_Z(x) = \begin{cases} 0, & \text{если } x \notin Z \\ \sup \{ \alpha \mid x \in Z_a \}, & \text{если } x \in Z
\end{cases}
$$

вслед за (Verdegay J.I., 1965) будем называть функцией принадлежности (нечеткого) решения задачи (1).

Пусть $\chi = \bigcap_{j=1}^m \chi_j$, где $\chi_j : \mathbb{R}^n \to [0,1]$. Рассмотрим частный случай, когда функции χ_j представляются в виде $\chi_j(x) = h_j(g_j(x))$ для некоторых функций $g_j : \mathbb{R}^n \to \mathbb{R}$. Будем считать h_j непрерывными невозрастающими функциями $h_j : \mathbb{R} \to [0,1]$ вида

$$
h_j(x) = \begin{cases} 1, & \text{если } x < 0, \\ \gamma_j(x), & \text{если } 0 \leq x \leq d_j, \\ 0, & \text{если } x > d_j
\end{cases}
$$

где d_j некоторые числа.

Наряду с классической задачей математического программирования

$$
\max_{x \in U} f(x),
$$

где $U = \{x \in \mathbb{R}^n \mid g_j(x) \leq 0, \ j = 1, \ldots, m\}$, рассмотрим задачу нечеткого программирования

$$
\max_{\text{fuzzy } x \in \Omega} f(x),
$$

в которой Ω есть нечеткое множество, порожденное функцией принадлежности $\chi = \bigcap_{j=1}^m \chi_j$, где $\chi_j(x) = h_j(g_j(x))$.

Интерес представляет связь между задачами (2.3) и (2.4). Параметры d_j, использованные в определении нечеткого множества Ω, могут интерпретироваться как пороговые значения для допустимых нарушений j-го ограничения в задаче (2.3). Оптимальное решение задачи (2.4)
представляет собой параметрическое семейство оптимальных решений задач типа \((2.3)\). Точка \(x \in R^n\) является решением задачи \((2.3)\) тогда и только тогда, когда \(\chi_{z}(x) = 1\).

2.4 Оптимизация с нечеткой целью

Обозначим через \(E(R^n)\) множество всех отображений \(f : R^n \to R\). Нечеткая цель в задаче математического программирования есть нечеткое множество в \(E(R^n)\). Пусть \(\psi \in \mathfrak{E}(E(R^n))\) есть некоторая нечеткая целевая функция.

Определение 2.5. Будем говорить, что \(x >_\alpha y\), если для всякого \(f \in E(R^n)\), удовлетворяющего условию \(\chi_{\psi}(f) \geq \alpha\), выполнено неравенство \(f(x) \geq f(y)\). Соотношение \(x >_\alpha y\) следует читать: \(\text{«}x\text{ не менее предпочитительно ранга } \alpha \text{, чем } y\text{»}\). Ясно, что отношение \(x >_\alpha y\) есть частичный порядок в \(R^n\) (антисимметричный, рефлексивный и транзитивный, см. [64]). Обозначим \(Q_\alpha = \{(x, y) \in R^n \times R^n | x >_\alpha y\}\). Нечеткий порядок \(\mu_\psi\) порождается в этой ситуации следующей функцией принадлежности

\[
\mu_\psi(x, y) = \begin{cases}
0, & \text{если } (x, y) \notin \bigcup_{\alpha > 0} Q_\alpha, \\
\sup_{(x, y) \not\in Q_\alpha} \alpha, & \text{если } (x, y) \in \bigcup_{\alpha > 0} Q_\alpha.
\end{cases}
\]

Рассмотрим параметрическое семейство задач многоцелевой оптимизации

\[
\max_{x \in U} \quad f(x), \quad \chi_{x}(f) \geq \alpha
\]

(2.5)

В случае, когда рассматриваются только линейные целевые функции, хорошо известно, что \(E(R^n)\) можно отождествить с \(R^n\) [64], поэтому, определение нечеткой цели здесь сводится к нечеткому множеству \(\psi \in \mathfrak{E}(R^n)\) и параметрическое семейство задач оптимизации, максимизирующих нечеткую цель, имеет вид

\[
\max_{x \in U} \quad cx, \
\chi_{x}(c) \geq \alpha
\]

(2.6)

Задачи \((2.5)\) и \((2.6)\) при каждом фиксированном \(\alpha\) представляют собой (классические) задачи многоцелевой оптимизации с множеством целей

46
\[\psi_\alpha = \{ f \mid \chi_\psi(f) \geq \alpha \} . \]

Обозначим через \(Z_\alpha \) множество решений задачи (2.5) и пусть

\[Z = \bigcup_{\alpha \in [0,1]} Z_\alpha . \]

Далее, нечетким решением задачи нечеткой оптимизации

\[
\begin{align*}
\max f(x) \\
\text{fuzzy} \\
\text{max}_{x \in U} \quad f \in \psi
\end{align*}
\]

будем называть множество с функцией принадлежности

\[\chi_Z(x) = \begin{cases}
0, & \text{если } x \notin Z \\
\sup \{ \alpha \mid x \in Z_\alpha \}, & \text{если } x \in Z
\end{cases} \]

2.5 Нечеткая цель и нечеткие ограничения

Пусть \(\Omega \in \mathcal{F}[R^n] \) - нечеткое множество и \(\psi \in \mathcal{F}[E(R^n)] \) - нечеткая цель. Будем решать задачу

\[
\begin{align*}
\max f(x). \\
\text{fuzzy} \\
\text{max}_{x \in \Omega} \quad f \in \psi
\end{align*}
\]

Комбинация рассмотренных выше методов приводит к следующей модели решения задачи (8). Рассматривается параметрическое семейство классических задач многоцелевой оптимизации вида (см. [60])

\[
\begin{align*}
\max f(x), \\
\text{fuzzy} \\
\text{max}_{\chi_\alpha \{ x \leq \alpha \}} \quad \chi_\psi(f) \geq \beta
\end{align*}
\]

где \(\alpha, \beta \in [0,1], \ f \in \mathcal{F}(R^n) \). Если решение (множество эффективных решений) задачи (2.9) обозначить через \(Z(\alpha, \beta) \) и положить \(Z = \bigcup_{\alpha, \beta \in [0,1]} Z(\alpha, \beta) \), то нечеткое решение задачи (2.8) определяется следующей функцией принадлежности
$$\chi_Z(x) = \begin{cases} 0, & \text{если } x \notin Z \\ \sup \{ \alpha \mid \exists (\beta \geq \alpha & \& \gamma \geq \alpha) x \in Z(\beta, \gamma) \}, & \text{если } x \in Z \end{cases} \quad (2.10)$$

2.6 Свойства точечно-множественного отображения $Z(\alpha, \beta)$

Математические свойства точечно-множественного отображения $Z(\alpha, \beta)$, сформулированные в данном разделе, по мнению авторов, являются базовыми для приложений теории нечеткой оптимизации. Они достаточно очевидны. Свойства 2, 4, 5 вытекают прямо из определения. Поэтому они не доказываются. Немного менее очевидными представляются свойства 1, 3, 6, 7, 8, краткое доказательство которых включено в текст данного отчета.

Заметим, что множество $Z(\alpha, \beta)$ является четким при любых значениях параметров α и β. Для изучения отображения $Z(\alpha, \beta)$ введем понятие экспоненциальной топологии [23]. Пусть X – топологическое пространство. Через $\mathfrak{F}(X)$ обозначим множество всех замкнутых подмножеств X. Для любого $A \subseteq X$ через 2^A обозначим множество

$$2^A = \{ B \in \mathfrak{F}(X) \mid B \subseteq A \}.$$

Определение 6. Следуя [23], κ-топологией (топологией полунепрерывности сверху) на $\mathfrak{F}(X)$ будем называть топологию, открытой предбазой которой являются множества 2^G для открытых G, и λ-топологией (топологией полунепрерывности снизу) – топологию, открытой предбазой которой являются множества $\mathfrak{F}(X) - 2^F$ для замкнутых F. Экспоненциальная топология (μ-топология) является объединением этих двух топологий.

Рассмотрим теперь задачу нечеткого программирования

$$\max \limits_{f \in \mathfrak{F}; \Omega} f(x),$$

в которой $\chi_{\Omega} = \bigcap \limits_{j=1}^{m} \chi_j$, где $\chi_j(x) = h_j(g_j(x))$, причем функции $h_j(x)$ непрерывные, монотонно невозрастающие и $g_j(x)$ – непрерывные и выпуклые, все f – непрерывные и вогнутые, $\bigcup \limits_{\alpha > 0} \Omega_{\alpha}$ ограничено.

В этом случае отображение $Z(\alpha, \beta)$ обладает следующими свойствами.
1) Для всех $\alpha, \beta \in [0,1]$ множество $Z(\alpha, \beta)$ замкнуто в R^n.

Доказательство. Это свойство следует из непрерывности всех $g_j(x)$ и всех f. Действительно, если последовательность $x_n \in Z(\alpha, \beta)$, то $\chi_j(x_n) = h_j(g_j(x_n)) \geq \alpha$. Следовательно, для предельной точки $x = \lim_{n \to \infty} x_n$ выполнено неравенство $\chi_j(x) = h_j(g_j(x)) \geq \alpha$. Далее, из непрерывности целевых функций $f \in \Psi_\beta$ и их непрерывности следует $x \in Z(\alpha, \beta)$.

2) $Z(\alpha, \beta)$ монотонно убывает по α.

3) $Z(\alpha, \beta)$ полунепрерывно сверху по β.

Доказательство. Из непрерывности $h_j(x)$, $g_j(x)$, всех $f \in \psi$ и ограниченности $\bigcup \Omega_\alpha$ следует замкнутость графика $Z(\alpha, \beta)$. Далее, так как $\bigcup \Omega_\alpha$ ограничено, это свойство следует из теоремы Куратовского о полунепрерывности сверху компактных отображений с замкнутым графиком [9].

4) $Z(0,0) = R^n$.

5) $\bigcup_{\alpha \geq \gamma} Z(\alpha, \beta) = Z(\gamma, \beta)$.

6) Если $Z(\alpha, \beta)$ полунепрерывно сверху по (α, β), то $Z^*(\alpha, \gamma) = \bigcup_{\beta \geq \gamma} Z(\alpha, \beta)$ имеет замкнутый график.

Доказательство. Пусть $x_n \to x_0$ и $x_n \in Z(\alpha, \beta_n)$, где $1 \geq \beta_n \geq \gamma$ и $\beta_n \to \beta^* \geq \gamma$. Из полунепрерывности Z имеем, что $x_0 \in Z(\alpha, \beta^*)$, откуда вытекает включение $x_0 \in Z^*(\alpha, \gamma)$.

7) Положим $Z^{**}(\gamma) = \bigcup_{\alpha, \beta \geq \gamma} Z(\alpha, \beta)$. Если $Z(\alpha, \beta)$ полунепрерывно сверху по (α, β) и $\bigcup_{\alpha > 0} \Omega_\alpha$ ограничено, то $Z^{**}(\gamma)$ имеет замкнутый график.

Доказательство. Справедливо следующее теоретико-множественное равенство $Z^{**}(\gamma) = \bigcup_{\alpha \geq \gamma} Z^*(\alpha, \gamma)$. Далее, заметим, что при $\alpha_1 \leq \alpha_2$ справедливо включение $Z^*(\alpha_1, \gamma) \supseteq Z^*(\alpha_2, \gamma)$, поскольку для каждого β справедливо включение $Z(\alpha_1, \beta) \supseteq Z(\alpha_2, \beta)$. Отсюда вытекает, что $Z^{**}(\gamma) = Z^*(\gamma, \gamma)$.

Пусть теперь $x_n \to x_0$ и $x_n \in Z^*(\gamma_n, \gamma_n)$, $\gamma_n \to \gamma_0 \geq \gamma$. Это означает, что найдутся такие $\alpha_n, \beta_n \geq \gamma_n$, что $x_n \in Z(\alpha_n, \beta_n)$. Без ограничения общности, переходя если надо к подпоследовательностям, можем считать, что $\alpha_n \to \alpha_0$ и $\beta_n \to \beta_0$. Из непрерывности $\Omega_j(x) = h_j(g_j(x))$ следует, что

49
\(x_0 \in \Omega_{\alpha_0} \), а из полунепрерывности сверху \(Z(\alpha, \beta) \) имеем \(x_0 \in Z(\alpha_0, \beta_0) \). Так как \(\alpha_0, \beta_0 \geq \gamma_0 \), то это означает включение \(x_0 \in Z^*(\gamma_0) \), т.е. замкнутость графика \(Z^*(\gamma) \).

8) Если \(Z^*(\gamma) \) имеет замкнутый график, то в определении нечеткого решения (2.11) Supremum можно заменить на Maximum.

Доказательство. Пусть \(\chi(x) = \alpha \). Выберем монотонно возрастающую последовательность \(\alpha_n \to \alpha \) и такую, что \(x \in Z^*(\alpha_n) \). Легко видеть, что требуемая последовательность существует. Теперь из замкнутости графика отображения \(Z^* \) имеем включение \(x \in Z^*(\alpha) \), и утверждение доказано.

Доказанные свойства отображения \(Z(\alpha, \beta) \) являются математической основой применения методов нечеткой оптимизации к приближенному решению прикладных задач.

2.7 Метод интервального представления данных

Понятие интервального числа. Фиксируем положительное вещественное число \(a \).

Обозначим \(x_a = \left[x - \frac{a}{2}, x + \frac{a}{2} \right] \). Назовем \(x_a \) интервальным числом уровня \(a \).

Понятие интервального вектора в \(R^m \). Фиксируем вектор \(a = (a_1, a_2, ..., a_m) \in R^m \) с положительными компонентами. Пусть \(x = (x_1, x_2, ..., x_m) \in R^m \). Обозначим через \(x_a \) параллелепипед с центром в точке \(x \), определенный формулой

\[
 x_a = \left(x_{a_1}, x_{a_2}, ..., x_{a_m} \right), \tag{2.12}
\]

который назовем интервальным вектором.

Нечеткое множество, порожденное случайной величиной по методу интервального представления данных.

Пусть \(\xi \) есть некоторая \(m \)-мерная вещественная случайная величина, \(\lambda \) - соответствующая вероятностная мера и \(\Phi: R^m \to [0,1] \) - функция распределения этой случайной величины.

Определим отображение \(\lambda_a : R^m \to [0,1] \) формулой (см. [22])

\[
\lambda_a(x) \equiv \int_{x-a}^{x+a} d\Phi(t), \tag{2.13}
\]

50
где через \(\int_a^b d\Phi(t) \) обозначен интеграл Стилтьеса по параллелепипеду \(Q = \{ t \in \mathbb{R}^m | a_k \leq t_k < b_k \} = [a, b] \).

Отображение \(\lambda_a \) при любом \(a > 0 \) представляет собой функцию принадлежности некоторого нечеткого множества. Это множество порождено случайной величиной \(\xi \), причем, согласно определению (2.13), число \(\lambda_a(x) \) представляет собой вероятность того, что случайная величина \(\xi \) принимает значения из параллелепипеда \(x_a \), т.е. вероятность того, что в результате наблюдения за случайной величиной \(\xi \) мы получим значение из параллелепипеда \(x_a \).

Нечеткое множество, функцией принадлежности которого является \(\lambda_a \), и будем называть множеством, порожденным интервальным представлением случайной величины \(\xi \).

2.8 Математические свойства нечетких показателей, порожденных интервальным представлением данных

Опираясь на вид формулы (2.13), можем говорить, что параметр \(a \) характеризует точность нечеткого представления случайной величины \(\xi \). Уменьшение каждой компоненты вектора \(a \) увеличивает точность представления. Увеличение каждой компоненты вектора \(a \) уменьшает точность представления.

Свойство 2.1. Согласно формуле (2.13), при фиксированном \(x \in \mathbb{R}^m \) значение \(\lambda_a(x) \) является монотонно возрастающей функцией параметра \(a \). Более того, при любом \(x \in \mathbb{R}^m \) справедливы равенства

\[
\lim_{a \to 0, a > 0} \lambda_a(x) = 0, \quad \lim_{a \to \infty, a > 0} \lambda_a(x) = 1,
\]

когда к бесконечности стремятся сразу все компоненты вектора \(a \). Это свойство является очевидной переформулировкой свойств функции распределения \(\Phi(t) \). Его можно интерпретировать следующим образом.

Свойство 2.2. Уменьшение точности нечеткого представления случайной величины \(\xi \) (увеличение каждой компоненты вектора \(a \)) для каждого \(x \in \mathbb{R}^m \) при прочих равных приводит к увеличению правдоподобности принадлежности числа \(x \) нечеткому образу этой случайной величины.
Свойство 2.3. Увеличение точности нечеткого представления случайной величины ξ (уменьшение каждой компоненты вектора a) для каждого $x \in R^m$ при прочих равных приводит к уменьшению правдоподобности принадлежности числа x нечеткому образу этой случайной величины.

Свойства 2.1, 2.2 и 2.3 являются основой интерпретации прикладных результатов. Обозначим через $L_1(-\infty, \infty)$ пространство измеримых по Лебегу вещественных функций, заданных на всей прямой, для которых $\|f\|_{L_1} = \int_{-\infty}^{\infty} |f(t)|dt < \infty$. Пусть ξ скалярная случайная величина.

Отображение λ_a в этом случае обладает следующим свойством.

Лемма 2.1. Для всякого $a > 0$ справедливо включение $\lambda_a \in L_1(-\infty, \infty)$, причем $\|\lambda_a\|_{L_1} = a$.

Доказательство. Фиксируем монotonно возрастающую последовательность чисел $A_n \to \infty$ и положим $b_n = \int_{-A_n}^{A_n} \lambda_a(x)dx$. Поскольку $\lambda_a(x) \geq 0$ для всякого x, то b_n - также монotonно возрастает, причем из определения b_n следует, что если существует конечный предел

$$b = \lim_{n \to \infty} b_n,$$ \hspace{1cm} (2.14)

то будет справедливо равенство $\|\lambda_a\|_{L_1} = b$. Ясно, что существование предела (2.14) вытекает из ограниченности последовательности b_n сверху.

Докажем ограниченность b_n.

Заметим, что

$$b_n = \int_{-A_n}^{A_n} \lambda_a(x)dx = \int_{-A_n}^{-\frac{a}{2}} + \int_{\frac{a}{2}}^{A_n} + \int_{-\frac{a}{2}}^{A_n} \lambda_a(x)dx = \int_{-\frac{a}{2}}^{\frac{a}{2}} \phi(t, x, a)d\Phi(t),$$ \hspace{1cm} (2.15)

где $\phi(t, x, a) = \begin{cases} 1, & \text{if } -\frac{a}{2} \leq t - x < \frac{a}{2}; \\ 0, & \text{elsewhere} \end{cases}$.

Используя теорему Фубини (см. [30], стр. 43), меняем в (2.15) порядок интегрирования и получаем
Представим интеграл (2.16) в виде трех (неотрицательных) слагаемых

\[b_n = b_n^1 + b_n^2 + b_n^3, \]

где

\[b_n^1 = \int_{-\frac{a}{2}}^{\frac{a}{2}} d\Phi(t) \int_{-A_n}^{A_n} \phi(t, x, a)dx, \quad b_n^2 = \int_{-\frac{a}{2}}^{\frac{a}{2}} d\Phi(t) \int_{-A_n}^{A_n} \phi(t, x, a)dx, \quad b_n^3 = \int_{-\frac{a}{2}}^{\frac{a}{2}} d\Phi(t) \int_{-A_n}^{A_n} \phi(t, x, a)dx. \]

Замечаем, что при \(|t| \leq A_n - \frac{a}{2} \) справедливо равенство \(\int_{-A_n}^{A_n} \phi(t, x, a)dx = a. \) Тогда

\[b_n^2 = a \left[\Phi \left(A_n - \frac{a}{2} \right) - \Phi \left(-A_n + \frac{a}{2} \right) \right] \leq a. \]

Далее, при \(t \geq A_n - \frac{a}{2} \) имеем

\[\int_{-A_n}^{A_n} \phi(t, x, a)dx = A_n - t + \frac{a}{2} \leq a, \]

а при \(t \leq -A_n + \frac{a}{2} \) - неравенство

\[\int_{-A_n}^{A_n} \phi(t, x, a)dx = A_n + t + \frac{a}{2} \leq a. \]

Фиксируем произвольное \(\varepsilon > 0. \) Подберем \(n(\varepsilon) \) так, чтобы при \(n > n(\varepsilon) \) были справедливы неравенства \(\Phi \left(A_n - \frac{a}{2} \right) > 1 - \varepsilon \) и \(\Phi \left(-A_n + \frac{a}{2} \right) < \varepsilon. \) Такое \(n(\varepsilon) \) подобрать можно, т.к. \(\Phi \) – функция распределения. Теперь при \(n > n(\varepsilon) \) с учетом (2.18) получаем оценку
\[
b^3_n = a \left[\Phi \left(A_n + \frac{a}{2} \right) - \Phi \left(A_n - \frac{a}{2} \right) \right] \leq a \left[\Phi \left(A_n + \frac{a}{2} \right) - 1 + \varepsilon \right] \leq a \left[\varepsilon + \left| 1 - \Phi \left(A_n + \frac{a}{2} \right) \right| \right] \leq 2a\varepsilon, \tag{2.20}
\]

а с учетом (2.19) – оценку

\[
b^1_n = a \left[\Phi \left(-A_n + \frac{a}{2} \right) - \Phi \left(-A_n - \frac{a}{2} \right) \right] \leq a \left[\Phi \left(-A_n + \frac{a}{2} \right) + \left| -A_n + \frac{a}{2} \right| \right] \leq 2a\varepsilon. \tag{2.21}
\]

Теперь, окончательно, при \(n > n(\varepsilon) \), с учетом (2.17), (2.20), (2.21), получаем

\[
b_n \leq a + 4a\varepsilon. \tag{2.22}
\]

Итак, ограниченность последовательности \(b_n \) сверху доказана. Следовательно, функция \(\bar{\lambda}_a \) суммируема.

Вычислим \(\left\| \bar{\lambda}_a \right\|_{L_1} \). Из (2.17) следует, что \(\lim_{n \to \infty} b_n = a \). В силу произвольности \(\varepsilon > 0 \), из (2.20) и (2.21) получаем равенства \(\lim_{n \to \infty} b^3_n = \lim_{n \to \infty} b^1_n = 0 \). Отсюда, окончательно, \(\left\| \bar{\lambda}_a \right\|_{L_1} = \lim_{n \to \infty} \left(b^1_n + b^2_n + b^3_n \right) = a \).

Лемма доказана.

Обобщение леммы 1 на \(m \)-мерный случай. Обозначим через \(L^{m}_1(\infty, \infty) \) пространство измеримых по Лебегу вещественных функций \(f : R^m \to R \), для которых

\[
\left\| f \right\|_{L^m_1} = \int_{\infty}^{\infty} \cdots \int_{\infty}^{\infty} |f(t)| dt < \infty. \quad \text{Пусть } \xi \text{ } m\text{-мерная случайная величина. Отображение \(\bar{\lambda}_a \) для}
\]

\[
a \in R^m, \quad a > 0, \text{ в этом случае обладает следующим свойством.}
\]

Лемма 2.2. Для всякого \(a = (a_1, a_2, ..., a_m) > 0, \quad a \in R^m \), функция \(\bar{\lambda}_a \) принадлежит пространству \(L^{m}_1(\infty, \infty) \) и справедливо равенство \(\left\| \bar{\lambda}_a \right\|_{L^m_1} = \prod_{k=1}^{m} a_k \).

Доказательство. По аналогии с одномерным случаем, фиксируем монотонно возрастающую последовательность векторов \(A_n \in R^m \) с положительными компонентами такую, что
\(A_n^k \to \infty \quad (k = 1, \ldots, m) \), и положим \(b_n = \int_{-A_n^1}^{A_n^1} \int_{-A_n^2}^{A_n^2} \ldots \int_{-A_n^m}^{A_n^m} \lambda_a(x)dx_1dx_2\ldots dx_m \). Поскольку \(\lambda_a(x) \geq 0 \) для всякого \(x \), то \(b_n \) - также монотонно возрастает, причем из определения \(b_n \) следует, что если при некоторой монотонно возрастающей последовательности векторов \(A_n \to \infty \) существует конечный предел

\[
b = \lim_{n \to \infty} b_n.
\]

(2.23)

то будет справедливо равенство \(\| \lambda_a \|_{L_1^n} = b \). Ясно, что существование предела \((2.23)\) вытекает из ограниченности последовательности \(b_n \) сверху.

Докажем ограниченность \(b_n \).

Заметим, что

\[
b_n = \int_{-A_n^1}^{A_n^1} \int_{-A_n^2}^{A_n^2} \int_{-A_n^m}^{A_n^m} \lambda_a(x)dx_1dx_2\ldots dx_m = \\
= \int_{-A_n^1}^{A_n^1} \int_{-A_n^2}^{A_n^2} \int_{-A_n^m}^{A_n^m} \phi_m(t, x)dx_1dx_2\ldots dx_m \int d\Phi(t_1, t_2, \ldots, t_m) = \\
\equiv \int_{-A_n^1}^{A_n^1} \int_{-A_n^2}^{A_n^2} \int_{-A_n^m}^{A_n^m} \phi_m(t, x)dx_1dx_2\ldots dx_m \int d\Phi(t_1, t_2, \ldots, t_m),
\]

(2.24)

где \(\phi_m(t, x) = \begin{cases} 1, & \text{if } -\frac{a}{2} \leq t - x < \frac{a}{2}, \\ 0, & \text{else} \end{cases} \), а через \(\int_{x_0}^{x_1} d\Phi(t_1, t_2, \ldots, t_m) \) обозначен интеграл по параллелепипеду \(\left[x_0, x_1 \right] \). Снова используя теорему Фубини (см. [30], стр. 43), меняем в (2.24) порядок интегрирования и получаем

\[
b_n = \int_{-A_n^{-\frac{a}{2}}}^{A_n^{-\frac{a}{2}}} d\Phi(t) \int_{-A_n^{-\frac{a}{2}}}^{A_n^{-\frac{a}{2}}} \int_{-A_n^{-\frac{a}{2}}}^{A_n^{-\frac{a}{2}}} \phi_m(t, x)dx_1dx_2\ldots dx_m.
\]

(2.25)

Представим интеграл (2.25) в виде двух неотрицательных слагаемых
\(b_n = b_n^1 + b_n^2, \)

gде

\[
\begin{align*}
b_n^1 &= \int_{-A_n + \frac{a}{2}}^{A_n - \frac{a}{2}} d\Phi(t) \int_{-A_n - \frac{a}{2}}^{A_n + \frac{a}{2}} \ldots \int_{-A_n - \frac{a}{2}}^{A_n + \frac{a}{2}} \varphi_m(t, x) dx_1 dx_2 \ldots dx_m, \\
b_n^2 &= \int_{G} d\Phi(t) \int_{-A_n - \frac{a}{2}}^{A_n + \frac{a}{2}} \ldots \int_{-A_n - \frac{a}{2}}^{A_n + \frac{a}{2}} \varphi_m(t, x) dx_1 dx_2 \ldots dx_m, \\
G &= \left[-A_n - \frac{a}{2}, A_n + \frac{a}{2} \right] \left[-A_n + \frac{a}{2}, A_n - \frac{a}{2} \right].
\end{align*}
\]

По определению \(\varphi_m(t, x) \) получаем

\[
b_n^1 = \prod_{k=1}^{m} a_k \cdot \int_{-A_n + \frac{a}{2}}^{A_n - \frac{a}{2}} d\Phi(t) = C_n \cdot \prod_{k=1}^{m} a_k, \text{ где } C_n = \int_{-A_n + \frac{a}{2}}^{A_n - \frac{a}{2}} d\Phi(t). \tag{2.26}
\]

Ясно, что последовательность \(C_n \) монотонно возрастает и \(0 < C_n \leq 1 \). Далее, так как \(\Phi(t) \) есть функция распределения, то:

- справедливо равенство \(\lim_{n \to \infty} C_n = 1 \);

- по всякому \(\varepsilon > 0 \) найдется такое \(n(\varepsilon) \), что при всех \(n > n(\varepsilon) \) для \(b_n^2 \) будет выполнено неравенство

\[
b_n^2 < \varepsilon. \tag{2.27}
\]

Итак, ограниченность сверху последовательности \(b_n \) доказана.

Вычислим \(\left\| \lambda_{\alpha} \right\|_{\mathbb{L}^1} \). Из (2.26) следует, что \(\lim_{n \to \infty} b_n^1 = \prod_{k=1}^{m} a_k \). Далее, в силу произвольности \(\varepsilon > 0 \) из (2.27) следует, что \(\lim_{n \to \infty} b_n^2 = 0 \). Отсюда, окончательно \(\left\| \lambda_{\alpha} \right\|_{\mathbb{L}^1} = \lim_{n \to \infty} \left(b_n^1 + b_n^2 \right) = \prod_{k=1}^{m} a_k \). Лемма доказана.

Используя функцию \(\overline{\lambda}_{\alpha} \), определим теперь меру всякого измеримого по Лебегу множества \(A \subseteq \mathbb{R}^n \).
Из леммы 2 следует, что для всякого $A \subseteq R^n$ справедливы неравенства $0 \leq \mu_{\bar{\lambda}_a}(A) \leq 1$. Число $\mu_{\bar{\lambda}_a}(A)$ интерпретируется как вероятность того, что пересечение множества A с нечетким множеством $A_{\bar{\lambda}_a}$ не пусто. Вероятностную меру $\mu_{\bar{\lambda}_a}(A)$ назовем мерой, порожденной интервальным представлением данных $\bar{\lambda}_a$.

Свойства вероятностной меры $\mu_{\bar{\lambda}_a}$.

Обозначим через $F_1(x)$ функцию распределения, соответствующую мере $\mu_{\bar{\lambda}_a}$. Лемма 2.3. Пусть $x, a \in R^1$ и $a > 0$. Тогда справедливо равенство

$$F_1(x) = \frac{1}{a} \int_{-\frac{a}{2}}^{\frac{a}{2}} \Phi(t) dt.$$

Доказательство. Из определения $F_1(x)$, с учетом леммы 1, имеем равенство

$$F_1(x) = \frac{1}{a} \int_{-\frac{a}{2}}^{\frac{a}{2}} \int_{u-a/2}^{u+a/2} d\Phi(t) = \frac{1}{a} \lim_{A \to \infty} \int_{-\frac{a}{2}}^{\frac{a}{2}} \left[\int_{u-a/2}^{u+a/2} d\Phi(t) \right].$$

Далее, используя функцию $\phi(t,x,a)$ из доказательства леммы 1, продолжим формулу (2.29) следующим образом

$$\frac{1}{a} \lim_{A \to \infty} \int_{-\frac{a}{2}}^{\frac{a}{2}} \left[\int_{u-a/2}^{u+a/2} \phi(t,u,a) d\Phi(t) \right].$$

Теперь, меняя в (2.30) порядок интегрирования, что возможно по теореме Фубини, затем переходя к пределу и вычисляя полученный интеграл интегрированием по частям

$$\int_a^\infty (\frac{ax}{2})^2 + \int_a^\infty (\frac{au}{2})^2 + \int_a^\infty (\frac{au}{2})^2.$$
\[
\frac{1}{a} \lim_{A \to \infty} \int_{-A}^{x} \left[\int_{-A - \frac{a}{2}}^{A + \frac{a}{2}} \varphi(t, u, a) du \right] \frac{d\Phi(t)}{dt} = \frac{1}{a} \lim_{A \to \infty} \int_{-A - \frac{a}{2}}^{A + \frac{a}{2}} d\Phi(t) \int_{-A}^{x} \varphi(t, u, a) du = \\
\Phi \left(x - \frac{a}{2} \right) + \frac{1}{a} \int_{x - \frac{a}{2}}^{x + \frac{a}{2}} \left(x + \frac{a}{2} - t \right) d\Phi(t) = \frac{1}{a} \int_{x - \frac{a}{2}}^{x + \frac{a}{2}} \Phi(t) dt.
\]

Лемма доказана.

Обобщение этой леммы на многомерный случай.

Лемма 2.4. Пусть \(x, a \in \mathbb{R}^m, a > 0, \) \(\frac{\partial^m \Phi(t)}{\partial t_1 \partial t_2 \ldots \partial t_m} = \frac{\partial}{\partial t_1} \left(\frac{\partial}{\partial t_2} \ldots \frac{\partial \Phi(t)}{\partial t_m} \right) \) всюду существует и непрерывна.

Тогда справедливо равенство

\[
F_1(x) = \prod_{k=1}^{m} \frac{1}{a_k} \int_{x - \frac{a_k}{2}}^{x + \frac{a_k}{2}} \int_{-\infty}^{x_k} \ldots \int_{-\infty}^{x_{k-1}} \Phi(t_1, t_2, \ldots, t_m) dt_1 dt_2 \ldots dt_m.
\]

Доказательство. Фиксируем монотонно возрастающую последовательность векторов \(A_n = \left(A_n^1, A_n^2, \ldots, A_n^m \right) \) такую, что при каждом \(k = 1, 2, \ldots, m \) справедливо равенство \(\lim_{n \to \infty} A_n^k = \infty \). Из определения \(F_1(x) \), с учетом леммы 2.2, имеем равенства

\[
F_1(x) = \prod_{k=1}^{m} \frac{1}{a_k} \int_{-\infty}^{x_k} \ldots \int_{-\infty}^{x_1} du_1 du_2 \ldots du_m \int_{u - \frac{a}{2}}^{u + \frac{a}{2}} d\Phi(t) = \\
= \prod_{k=1}^{m} \frac{1}{a_k} \lim_{n \to \infty} \int_{-A_n^1}^{x_1} \ldots \int_{-A_n^m}^{x_m} \int_{u - \frac{a}{2}}^{u + \frac{a}{2}} d\Phi(t) = \\
= \prod_{k=1}^{m} \frac{1}{a_k} \lim_{n \to \infty} \int_{-A_n^1}^{x_1} \ldots \int_{-A_n^m}^{x_m} \int_{-A_n - \frac{a}{2}}^{x + \frac{a}{2}} \varphi_m(t, u) d\Phi(t).
\]
Здесь используется функция \(\Phi_m(t,u) \), определенная в доказательстве леммы 2.2. Согласно лемме 2.2, функция \(\int_{\mathbb{R}^m} \Phi_m(t,u) \) суммируется по Лебегу на \(\mathbb{R}^m \). Поэтому, теперь используем теорему Фубини (см. [30], стр. 43) и меняем порядок интегрирования

\[
\prod_{k=1}^{m} \frac{1}{a_k} \cdot \lim_{n \to \infty} \int_{-A_0^k}^{-A_0^{-a/2}} \cdots \int_{-A_0^m}^{-A_0^{-a/2}} \int_{-A_0}^{-A_0^{-a/2}} \Phi(t) \int_{-A_0}^{-A_0^{-a/2}} \cdots \int_{-A_0}^{-A_0^{-a/2}} \Phi_m(t,u) du_k du_m du_1 \cdots du_m =
\]

(2.32)

Далее, вычисляем интеграл \(J = \int_{-A_0}^{-A_0^{-a/2}} \cdots \int_{-A_0}^{-A_0^{-a/2}} \Phi_m(t,u) du_1 du_2 \cdots du_m \).

Заметим, что \(\Phi_m(t,u) = \phi(t_1,u_1,a_1) \cdot \phi(t_2,u_2,a_2) \cdots \phi(t_m,u_m,a_m) \), поэтому

\[
J = \prod_{k=1}^{m} \int_{-A_0}^{-A_0^{-a/2}} \phi(t_k,u_k,a_k) du_k = \prod_{k=1}^{m} \psi(t_k,x_k,a_k,A_0^k),
\]

где \(\psi(t,x,a,A) =
\[
\begin{cases}
 a, & \text{if } -A + a/2 \leq t \leq x - a/2 \\
 x + a/2 - t, & \text{if } x - a/2 \leq t \leq x + a/2 \\
 A + a/2 + t, & \text{if } -A - a/2 \leq t \leq -A + a/2 \\
 0, & \text{elsewhere.}
\end{cases}
\]

Таким образом, продолжая (2.32), получим

\[
F_i(x) = \lim_{n \to \infty} \int_{-A_0^{-a/2}}^{x + a/2} \frac{\partial^m \Phi(t)}{\partial t_1 \partial t_2 \cdots \partial t_m} dt \prod_{k=1}^{m} \frac{\psi(t_k,x_k,a_k,A_0^k)}{a_k}.
\]

(2.33)

Положим \(G_n = \left[-A - a/2, x + a/2\right] \). Замечаем, что если \(t \in \partial G_n \), то
\[M(t) = \prod_{k=1}^{m} \psi(t_k, x_k, a_k, A_n^k) = 0. \] (2.34)

Преобразуем интеграл (2.33) с использованием теоремы Фубини. Получим

\[
\int_{-\frac{a}{2}}^{\frac{a}{2}} \frac{\partial^m \Phi(t)}{\partial t_1 \partial t_2 \ldots \partial t_m} dt \prod_{k=1}^{m} \frac{\psi(t_k, x_k, a_k, A_n^k)}{a_k} = \int_{-\frac{a}{2}}^{\frac{a}{2}} dt \ldots \int_{-\frac{a}{2}}^{\frac{a}{2}} dt_m \times \\
\times \left[\int_{-\frac{a}{2}}^{\frac{a}{2}} \frac{\partial^m \Phi(t)}{\partial t_1 \partial t_2 \ldots \partial t_m} \psi(t_1, x_1, a_1, A_1^1) dt_1 \right] \prod_{k=2}^{m} \frac{\psi(t_k, x_k, a_k, A_n^k)}{a_k}.
\]

Далее, интеграл в квадратных скобках, в соответствии с определением функции \(\psi(t, x, a, A) \), разбиваем на три интеграла по отрезкам

\[
\left[-A_n^1 - \frac{a_1}{2}, -A_n^1 + \frac{a_1}{2} \right] \left[-A_n^1 + \frac{a_1}{2}, x_1 - \frac{a_1}{2} \right] \left[x_1 - \frac{a_1}{2}, x_1 + \frac{a_1}{2} \right].
\]

Каждый из полученных интегралов вычисляем интегрированием по частям. С учетом (2.34), из определения функции \(\psi(t, x, a, A) \) получаем

\[
\int_{-\frac{a}{2}}^{\frac{a}{2}} \frac{\partial^m \Phi(t)}{\partial t_1 \partial t_2 \ldots \partial t_m} \psi(t_1, x_1, a_1, A_1^1) dt_1 = \\
= \frac{1}{a_1} \int_{-\frac{a}{2}}^{\frac{a}{2}} \frac{\partial^{m-1} \Phi(t)}{\partial t_2 \ldots \partial t_m} dt_1 - \frac{1}{a_1} \int_{-\frac{a}{2}}^{\frac{a}{2}} \frac{\partial^{m-1} \Phi(t)}{\partial t_2 \ldots \partial t_m} dt_1.
\]

Последовательно проделав аналогичную процедуру с переменными \(t_2, t_3, \ldots, t_m \), окончательно получим

\[
F_1(x) = \prod_{k=1}^{m} \frac{1}{a_k} \int_{-\frac{a}{2}}^{\frac{a}{2}} \Phi(t) dt + \prod_{k=1}^{m} \frac{1}{a_k} \lim_{n \to \infty} \left(\sum_{s=2}^{m} \epsilon_s \int_{P_n^s} \Phi(t) dt \right), \quad (2.35)
\]

60
где числа $\varepsilon_1 = \pm 1$, параллелепипеды $P_n^s = \left[z_n^s - \frac{a}{2}, z_n^s + \frac{a}{2} \right]$ размещены в вершинах $z_n^1, z_n^2, ..., z_n^{2n}$ многогранника $[-A_n, x]$, причем считается, что $z_n^1 = x$. Так как $\Phi(t)$ - функция распределения, то плотность $\frac{\partial^m \Phi(t)}{\partial t_1 \partial t_2 \ldots \partial t_m}$ абсолютно суммируема и каждый из интегралов под знаком предела в (2.35) стремится к нулю при $n \to \infty$, откуда окончательно $F_1(x) = \prod_{k=1}^{m} \frac{1}{a_k} \cdot \int_{x - \frac{a}{2}}^{x + \frac{a}{2}} \Phi(t) dt$. Лемма доказана.

Обозначим через η случайную величину, функцией распределения которой является $F_1(x)$.

Справедливо следующее свойство случайной величины η.

Лемма 2.5. Если $\Phi(t)$ непрерывно дифференцируема по t_j, то существует частная производная $\frac{\partial F_i(x)}{\partial x_j}$, причем справедлива формула

$$
\frac{\partial F_i(x)}{\partial x_j} = \prod_{k=1}^{m} \frac{1}{a_k} \cdot \int_{x - \frac{a}{2}}^{x + \frac{a}{2}} \frac{\partial \Phi(t)}{\partial t_j} dt.
$$

Доказательство. Так как мера Лебега инвариантна относительно сдвига $Ax = x + \Delta x_j$ по j-й координате, то справедливы равенства

$$
\frac{\partial F_i(x)}{\partial x_j} = \lim_{\Delta x_j \to 0} \frac{F_i(x + \Delta x_j) - F_i(x)}{\Delta x_j} = \\
= \prod_{k=1}^{m} \frac{1}{a_k} \cdot \lim_{\Delta x_j \to 0} \int_{x - \frac{a}{2}}^{x + \frac{a}{2}} \frac{\Phi(t + \Delta x_j) - \Phi(t)}{\Delta x_j} dt.
$$

Возможность перехода к пределу под знаком интеграла вытекает из равномерной непрерывности $\frac{\partial \Phi(x)}{\partial x_j}$ на компактах. Этим завершается доказательство леммы.

Следствие 1. Из леммы 2.5 следует, что если случайная величина ξ имеет непрерывную плотность распределения $\frac{\partial^m \Phi(t)}{\partial t_1 \partial t_2 \ldots \partial t_m} = g(t)$, то η также имеет непрерывную плотность распределения $\frac{\partial^m F_1(t)}{\partial t_1 \partial t_2 \ldots \partial t_m} = h(t)$, причем справедлива формула
$$h(x) = \prod_{k=1}^{m} \frac{1}{a_k} \cdot \int_{x-a/2}^{x+a/2} g(t) dt.$$ \hspace{1cm} (2.36)

Следствие 2. Если случайная величина ξ имеет непрерывную плотность распределения $g(t)$ и для вещественной функции $y(x)$ существует интеграл $\int_{R^n} y(x) dF_1(x)$, то справедливо равенство

$$\int_{R^n} y(x) dF_1(x) = \prod_{k=1}^{m} \frac{1}{a_k} \cdot \int_{R^n} y(x) dx \int_{x-a/2}^{x+a/2} g(t) dt.$$ \hspace{1cm} (2.37)

Доказательство. По формуле (2.36) имеем

$$\int_{R^n} y(x) dF_1(x) = \prod_{k=1}^{m} \frac{1}{a_k} \cdot \int_{R^n} y(x) dx \int_{x-a/2}^{x+a/2} g(t) dt.$$

Далее, меняя в полученном выражении порядок интегрирования, с использованием функции $\psi(t,x,a,A)$ и предельного перехода из доказательства леммы 2.4, получаем формулу (2.37). Следствие доказано.

Обозначим математическое ожидание случайной величины ξ через $M\xi$, дисперсию – через $D\xi$, ковариацию случайных величин ξ_1 и ξ_2 - через $Cov(\xi_1, \xi_2)$. По формуле (2.37) легко вычисляются моменты первого и второго порядков случайной величины η. Для произвольных $i, k = 1,2,\ldots,m$ справедливы следующие равенства

$$M\eta_k = M\xi_k, \quad D\eta_k = D\xi_k + \frac{a_k^2}{12},$$

$$Cov(\eta_i, \eta_k) = Cov(\xi_i, \xi_k), \quad i \neq k.$$

Предположим теперь, что о случайной величине ξ мы знаем только ряд выборочных значений

$$\xi_1, \xi_2, \ldots, \xi_N, \quad \xi_k \in R^n.$$ \hspace{1cm} (2.38)

Выборкой (2.38) порождается эмпирическая вероятностная мера λ_N и эмпирическая функция распределения $\Phi_N : R^n \to [0,1]$. Следовательно, при каждом фиксированном $a \in R^n$ & $a > 0$
имеется последовательность функций принадлежности нечетких множеств \((\lambda_{N(a)})\), построенных по формуле (2.13).

Лемма 2.6. Последовательность функций \(f_{N}(x)=\lambda_{N(a)}(x)\) при \(N \to \infty\) сходится к функции \(\lambda_{a}(x)\) в каждой точке \(x\), такой, что \(x - \frac{a}{2}\) и \(x + \frac{a}{2}\) являются точками непрерывности функции \(\Phi\).

Доказательство. Эта лемма является следствием теоремы Гливенко-Кантелли (см. [9], стр. 22).

2.9 Нечеткие отображения, порожденные точечно-точечными функциями

Пусть \(f : X \to Y\) - некоторое точечно-точечное отображение множества \(X\) в множество \(Y\). Определим отображение \(\tilde{f} : \mathcal{X}(x) \to \mathcal{X}(y)\) следующим образом. Возьмем некоторое \(A \in \mathcal{X}(x)\), \(\chi_{A}\) - ее функция принадлежности. Функцию \(\chi_{B}\) принадлежности множества \(B = \tilde{f}(A) \in \mathcal{X}(y)\) определим по формуле

\[
\chi_{B}(y) = \sup_{x \in f^{-1}(y)} \chi_{A}(x),
\]

где \(f^{-1}(y) = \{x \in X | f(x) = y\}\).

Определенное таким образом отображение \(\tilde{f} : \mathcal{X}(x) \to \mathcal{X}(y)\), будем называть нечетким отображением, порожденным точечно-точечной функцией \(f : X \to Y\). Отображение \(\tilde{f}\) иногда называется нечетким продолжением функции \(f : X \to Y\).

Обобщение данной методики нечеткого продолжения на функции многих переменных выполняется по методу математической индукции. Пусть \(f : \prod_{i=1}^{n} X_{i} \to Y\), \(A_{i} \in \mathcal{X}(X_{i})\), \(\chi_{i}\) - их функции принадлежности. Функция принадлежности \(\chi_{B}\) множества \(B = \tilde{f}(A_{1}, A_{2}, ..., A_{n}) \in \mathcal{X}(y)\) определяется по формуле

\[
\chi_{B}(y) = \sup_{x \in f^{-1}(y)_{1\leq i \leq n}} \chi_{i}(x_{i}),
\]

где \(f^{-1}(y) = \left\{ x = (x_{1}, x_{2}, ..., x_{n}) \in \prod_{i=1}^{n} X_{i} | f(x) = y \right\}\).

В частности, сложение и умножение нечетких множеств определяются следующим образом.
Пусть в X определена операция сложения и $A, B \in \mathcal{F}(X)$. Тогда функция принадлежности суммы нечетких множеств $A + B$ вычисляется по формуле

$$\chi_{A + B}(x) = \sup_{y + z = x} \min \{\chi_A(y), \chi_B(z)\}.$$

Пусть в X определена операция умножения и $A, B \in \mathcal{F}(X)$. Тогда функция принадлежности произведения нечетких множеств $A \cdot B$ вычисляется по формуле

$$\chi_{A \cdot B}(x) = \sup_{y \cdot z = x} \min \{\chi_A(y), \chi_B(z)\}.$$

3. Оптимизационная межотраслевая динамическая модель с нечеткими параметрами

В Новосибирском государственном университете и Институте экономики и организации промышленного производства СО РАН для выполнения народнохозяйственных исследований на межотраслевом уровне разработана система комплексного анализа межотраслевой информации (система КАМИН). Эта система представляет собой программу, написанную на языке высокого уровня PASCAL-VISUAL (DELPHI-7) с 32-разрядным доступом к памяти и методику ее использования. Система адаптирована к методологии национальных счетов (подробнее см. [3]).

В систему включены:

1) Межотраслевая динамическая модель использования валового выпуска с распределенным строительным лагом. В модели дифференцированно представлены первое и второе подразделения экономики, фондосоздающие и нефондосоздающие отрасли.
2) Межотраслевая модель прогнозирования динамики отраслевых индексов цен.
3) Модель прогнозирования динамики финансовых потоков между субъектами финансовой деятельности.
4) Модель прогнозирования взаимодействия денежной массы и производства.
5) Модель прогнозирования доходов и расходов федерального и консолидированного бюджетов.
6) Модель построения обобщенных магистралей и анализа магистральных свойств траекторий.
7) Модель материально-финансовой сбалансированности на внутреннем рынке страны.
8) Модель нечеткой оптимизации.

Расчеты по всему комплексу моделей проводятся на основе единой информационной базы данных. Этим обеспечивается комплексность исследования. Разработанная методика информационного обеспечения позволяет формировать исходные информационные базы для системных расчетов с годовым и квартальным шагом по времени.
Единая информационная база является основой согласования результатов расчетов по всем моделям с использованием системных процедур.

Отличительной особенностью моделей, включенных в систему КАМИН, является согласованность их параметров со структурой отчетных данных государственной статистики.

Ниже приводится описание ДММ с нечеткими параметрами.

Особенностью построения ДММ является разбиение производственной сферы на два подразделения. В соответствии с методологией системы национальных счетов в сферу производственной деятельности включается как материальное, так и нематериальное производство, а также часть труда в домашних хозяйствах. В связи с этим к I подразделению сферы производства валового выпуска относится производство средств производства и услуг (материальных и нематериальных), включаемых в промежуточное потребление. Ко II подразделению относится производство предметов потребления и услуг (материальных и нематериальных), включаемых в состав конечного потребления. Обоснование такой трактовки понятия двух подразделений национальной экономики дано в работе [6].

В модели используются следующие параметры, которые описываются в терминах нечетких множеств.

\(n \) - число отраслей в экономике;

\(m \) - число отраслей первого подразделения \((m<n)\);

\(k \) - число фондосоздающих отраслей;

\(T \) - количество периодов времени для прогнозирования;

\(l \) – число видов трудовых ресурсов, выделяемых в модели;

\(a_{ij}(t) \) - коэффициенты прямых материальных затрат продукции отрасли \(i \) на производство единицы продукции отрасли \(j \) в период времени \(t \);

\(c_{hj}(t) \) - коэффициенты трудоемкости продукции отрасли \(j \) по \(h \)-му виду трудовых ресурсов в период времени \(t \);

\(b_{ij}(t) \) - коэффициенты фондоемкостей продукции отрасли \(j \) по \(i \)-му виду основных фондов в период времени \(t \);

\(\theta_{ij} \) - строительный лаг в \(j \)-й отрасли по \(i \)-му виду основных фондов;

\(\kappa_{i}(t,\tau) \) - коэффициент выбытия основных фондов \(i \)-го вида в \(j \)-й отрасли возраста \(\tau \) в период времени \(t \);

\(B_{ij}(t) \) - ввод в действие основных фондов \(i \)-го вида в \(j \)-й отрасли в период времени \(t \);

\(K_{ij}(t,t+\tau) \) - инвестиции \(i \)-го вида в \(j \)-й отрасли в году \(t \) в объекты, вводимые в действие в период времени \(t+\tau \).
\(K^*_j(t) \) - общий объем инвестиций \(i \)-го вида в \(j \)-й отрасли в период времени \(t \);
\(\mu_j(t, \tau) \) - коэффициент, показывающий, какая доля ввода в действие основных фондов в \(j \)-й отрасли в период времени \(t + \tau \) формируется за счет инвестиций \(i \)-го вида периода \(t \), так что
\[
\mu_j(t, \tau) = \frac{K^*_j(t, t + \tau)}{\left(\sum_{i=1}^{k} B_{ij}(t + \tau) \right)} ;
\]

\(L_n(t) \) - численность \(h \)-го вида трудовых ресурсов, которые потенциально могут быть заняты в экономике в периоде \(t \);
\(F^*_j(t, t - \tau) \) - основные фонды \(i \)-го вида в \(j \)-й отрасли на конец года \(t \), введенные в периоде \(t - \tau \);
\(F^*_j(t) \) - основные фонды \(i \)-го вида в \(j \)-й отрасли на конец периода времени \(t \);
\(N_j(t) \) - незавершенное строительство основных фондов \(i \)-го вида в \(j \)-й отрасли на конец периода \(t \);
\(f_j(t) \) - взвешивающие коэффициенты продукции \(j \)-й отрасли в целевом функционале экономической системы.

Предполагается, что все введенные параметры представляют собой нечеткие множества.

Пусть экономическая система включает \(n \) отраслей, из которых отрасли \(1 \leq i \leq k \) - фондосоздающие, а \(k < i \leq m \) - нефондосоздающие первого подразделения, \(m < i \leq n \) - отрасли второго подразделения.

Поскольку параметры модели являются нечеткими множествами, то все дальнейшие их арифметические преобразования, выполненные в соответствии с правилами нечеткой арифметики, также будут представлять собой нечеткие множества.

Обозначим через \(x_j(t) \) - нечеткий произведененный, а через \(\bar{x}_j(t) \) - нечеткий использованный валовой выпуск \(j \)-й отрасли, через \(S_j(t) \) - нечеткое сальдо экспорта-импорта по \(j \)-му продукту, \(\Delta z_j(t) \) - нечеткий прирост запасов и \(\Pi_j(t) \) нечеткие потери продукции \(j \)-й отрасли в период времени \(t \). По аналогии с [3], соотношение продуктового баланса \(j \)-й отрасли запишем в виде:

\[
x_j(t) = \bar{x}_j(t) + S_j(t) + \Delta z_j(t) + \Pi_j(t). \tag{3.1}
\]

Воспроизводство основных фондов в модели динамического межотраслевого баланса с лагами описывается как процесс обмена использованного продукта фондосоздающих отраслей периода \(t \) на ввод в действие основных фондов периода \(t \), который опосредуется изменением объема незавершенного строительства.
Применение лаговых показателей позволяет увязать процесс производства продукции фондосоздающими отраслями машиностроения и строительства, а также экспорта и импорта продукции этих отраслей в каждом периоде времени с предшествующими и последующими периодами. Часть произведенного продукта фондосоздающих отраслей экономической системы каждого периода обеспечивает продолжение строительства объектов, начатое ранее, часть экспортируется. Это обусловливает связанность инвестиций и, следовательно, зависимость их объема, отраслевой и технологической структуры от инвестиций предшествующих периодов времени и от объемов импорта продукции фондосоздающих отраслей. Ввод в действие основных фондов в каждый период времени формируется по материально-вещественному составу за счет использованного продукта машиностроения и строительства ряда предыдущих и данного периода времени. В состав незавершенного строительства \(j \)-й отрасли \(1 \leq j \leq n \) в период \(t \) поступает продукция \(i \)-й фондосоздающей отрасли в объеме \(K^*_y(t) \) и распределяется по слоям незавершенного строительства. Инвестиции определяются по формуле

\[
K^*_y(t) = \sum_{u \geq 0} K_y(t, t + u).
\] (3.2)

Ввод в действие основных фондов \(B_y(t) \) периода \(t \) в \(j \)-й отрасли формируется из использованного продукта \(i \)-й фондосоздающей отрасли по формуле

\[
B_y(t) = \sum_{u \geq 0} K_y(t - u, t).
\] (3.3)

Объем инвестиций \(K_y(t, t + u) \) в слой незавершенного строительства, вводимый в периоде \(t + u \), вычисляется через ввод в действие основных фондов этого периода по формуле

\[
K_y(t, t + u) = \mu_y(t, u) \cdot \sum_{i=1}^{k} B_y(t + \tau).
\] (3.4)

Коэффициенты \(\mu_y(t, u) \) являются интегральной характеристикой ввода в действие основных фондов, зависящей от технологии и интенсивности строительства объектов в отрасли \(j \). При этом технология строительства состоит из конечного числа стадий. Тогда инвестиции определяются по формуле

\[
K_y(t, t + u) = \sum_{v} \left(\xi_j(t, t + u, v) \cdot \eta_i(t + u, v) \cdot \sum_{i=1}^{k} B_y(t + \tau) \right).
\] (3.5)
где $\eta_j(t+u,v)$ - доля ввода в действие основных фондов i-го вида в j-й отрасли в период $t+u$, которая формируется в v-й стадии строительства; $\xi_j(t,t+u,v)$ - часть v-й стадии, выполненная в t-м периоде (за u периодов до ввода данного слоя). В зависимости от ожидаемых инвестиций в основной капитал несколько последовательных стадий могут быть выполнены в течение одного периода или одна стадия может продолжаться несколько периодов. Формулы (3.4), (3.5) - базовые для определения объемов инвестиций в основной капитал по отраслям экономической системы через ожидаемые вводы в действие основных фондов. Дополнительные управляющие параметры $\xi_j(t,t+u,v)$ в формуле (3.5) дают возможность прогнозировать согласованые ввод в действие основных фондов и инвестиции в основной капитал в условиях изменяющихся во времени сроков строительства. Для этого в нормативах $\xi_j(t,t+u,v)$ учитывается ускорение или замедление интенсивности капитального строительства.

Рекуррентные соотношения по пересчету незавершенного строительства описываются формулой

$$
N_j(t) = N_j(t-1) - \sum_{u=1}^{g-1} K_j(t-u,t) + \sum_{u=1}^{g-1} K_j(t,u). \tag{3.6}
$$

Рекуррентные соотношения для определения объема основных фондов i-го вида в j-й отрасли возраста и на конец периода t задаются формулой

$$
F_j(t,0) = B_j(0), \quad F_j(t,u) = F_j(t-1,u-1) \cdot (1 - \kappa_j(t,u)). \tag{3.7}
$$

Модель воспроизводства основных фондов (3.2)-(3.7) используется для определения инвестиций в основной капитал и их технологической структуры по отраслям через ожидаемый ввод в действие основных фондов с учетом строительного лага и режима $\xi_j(t,t+u,v)$ функционирования инвестиционного комплекса.

Произведенный валовой выпуск j-й фондосоздающей отрасли $x_j(t)$ в период t определяется по формуле

$$
x_j(t) = \sum_{j=1}^{n} K_j^*(t) + S_j(t) + n_j(t). \tag{3.8}
$$

Баланс производства и использования продукции нефондосоздающих отраслей первого подразделения имеет следующий вид
$$x_j(t) = \sum_{j=1}^{n} a_{ij}(t) \cdot x_j(t) + S_i(t) + n_i(t), \quad k < i \leq m. \quad (3.9)$$

Соотношения для формирования продукции отраслей второго подразделения представляются в виде

$$x_i(t) = Q_i(x_i(t-1), S_i(t-1), \lambda, t) + S_i(t), \quad m < i \leq n, \quad (3.10)$$

где Q_i - отображения, синтезирующие структуру и динамику потребностей (обычно - это монотонно возрастающие функции параметра λ).

Ограничения по трудовым ресурсам описываются системой неравенств

$$\sum_{j=1}^{n} c_{ij}(t) \cdot x_j(t) \leq L_n(t), \quad h = 1,...,l. \quad (3.11)$$

Ограничения по основным фондам описываются системой неравенств

$$b_{ij}(t) \cdot x_j(t) \leq F_{ij}(t), \quad 1 \leq i \leq k, \quad 1 \leq j \leq n. \quad (3.12)$$

Обозначим через Ω множество нечетких траекторий развития экономической системы $x_j(t)$, удовлетворяющие в каждый период времени t ограничением (3.2)-(3.3), (3.5)-(3.12) и сформулируем задачу нечеткой оптимизации

$$\sum_{j=1}^{n} \sum_{i=1}^{n} f_{ij}(t) \cdot x_j(t) \Rightarrow \max, \quad x \in \Omega, \quad (3.13)$$

где множество допустимых траекторий Ω и коэффициенты максимизируемой функции $f_{ij}(t)$ являются нечеткими.

Решение задачи (3.13) при вводах в действие основных фондов $B_{ij}(t)$, трудовых ресурсах $L_k(t)$, а также нормативах $n_{ij}(t+u,v)$, $\xi_{ij}(t,t+u,v)$, $\kappa_{ij}(t,u)$, $a_{ij}(t)$, $S_i(t)$, $c_{ij}(t)$ для каждого периода времени из $[0;T]$, дает нечеткую систему показателей развития экономической системы, включая валовой выпуск $x_j(t)$, инвестиции в основной капитал $K_{ij}(t)$, вводы в действие основных фондов $B_{ij}(t)$ и основные фонды на конец каждого периода времени $F_{ij}^*(t) = \sum_{u \geq 0} F_{ij}(t, u)$.
4. Усовершенствованные алгоритмы и программное обеспечение расчетов с использованием нечетко-множественных методов

4.1. Основные понятия, используемые в данном разделе

Пусть X – топологическое пространство с мерой μ, R^X - совокупность вещественных измеримых функций на X. Функция $f \in R^X$ называется суммируемой со степенью p, если справедливо неравенство

$$\int_X |f|^p \, d\mu < \infty.$$

Обозначим $L_p(X)$ - нормированное пространство измеримых суммируемых со степенью p вещественных функций на X с нормой

$$\|f\|_p = \left(\int_X |f|^p \, d\mu \right)^{\frac{1}{q}},$$

через $L_\infty(X)$ - пространство почти всюду ограниченных измеримых функций с нормой

$$\|f\|_\infty = \text{ess sup}_{x \in X} |f(x)|.$$

Пусть $p \geq 1$, $q \geq 1$, $f \in L_p(X)$, $g \in L_q(X)$ и $\frac{1}{p} + \frac{1}{q} = 1$. Рассмотрим билинейный функционал

$$\langle f, g \rangle = \int_X f \cdot g \, d\mu,$$

для которого справедливо интегральное неравенство Гельдера

$$\left|\int_X f \cdot g \, d\mu\right| \leq \|f\|_p \cdot \|g\|_q.$$ \hspace{1cm} (4.1)

Далее, обозначим $I = [0;1]$, I^X - пространство измеримых отображений $f : X \to I$. Очевидно $I^X \subseteq R^X$.

Определение. Нечетким множеством A в пространстве X называется геометрический объект, обладающий следующим свойством: для каждого $x \in X$ определено число $\chi_A(x) : 0 \leq \chi_A(x) \leq 1$, которое интерпретируется как степень правдоподобности высказывания, что
Если \(\chi_A(x)=0 \), то высказывание \(x \in A \) абсолютно неправдоподобно, если \(\chi_A(x)=1 \), то высказывание \(x \in A \) абсолютно правдоподобно. Функция \(\chi_A : X \rightarrow I \) называется функцией принадлежности (нечеткого) множества \(A \) (см. [68]).

Нечеткое множество \(A \) называется измеримым, если \(\chi_A \in I^X \).

Очевидно, между функциями \(\chi \in I^X \) и измеримыми нечеткими множествами пространства \(X \) устанавливается взаимнооднозначное соответствие. Нечеткое множество \(A \), функцией принадлежности которого является \(\chi \in I^X \), будем обозначать \(A_\chi \). Для всякого числа \(\alpha \in [0;1] \) (четкое) множество \(E_\alpha(A)=\{x \in X | \chi(x) \geq \alpha\} \) называется \(\alpha \)-сечением нечеткого множества \(A \).

Очевидно, если \(A \) измеримо, то для всякого \(\alpha \in [0;1] \) множество \(E_\alpha(A) \) также измеримо.

Далее, обозначим \(\mathcal{E}(X) \) - совокупность измеримых нечетких множеств пространства \(X \), \(\mathcal{P}(X) \) - совокупность нечетких множеств пространства \(X \), функции принадлежности которых суммируемы со степенью \(p \) по мере \(\mu \), \(\mathcal{L}(X) \) - совокупность функций принадлежности нечетких множеств, которые являются измеримыми по мере \(\mu \), так что \(\mathcal{L}(X)=I^X \), \(\mathcal{P}(X) \) - совокупность функций принадлежности нечетких множеств, которые являются суммируемыми со степенью \(p \) по мере \(\mu \).

4.2. Функциональные свойства нечетких множеств

Очевидно, для всякого \(p \geq 1 \) справедливо включение

\[\mathcal{L}_p(X) \subseteq L_p(X). \]

Из определения нормы в \(L_\mu(X) \) вытекает равенство \(\mathcal{L}_\mu(X)=\mathcal{L}(X) \). Поскольку все функции \(\chi \in \mathcal{L}(X) \) ограничены единицей \((0 \leq \chi(x) \leq 1)\), то при любом \(x \in X \) для \(p \geq 1 \), \(p < q \) справедливо неравенство \(|\chi(x)|^p \geq |\chi(x)|^q \), т.е. \(\|\chi\|_p \geq \|\chi\|_q \). Следовательно, для всех \(p \geq 1 \), \(p < q \) справедливо включение

\[\mathcal{L}_p(X) \subseteq \mathcal{L}_q(X). \]

Лемма 4.1. Пусть \(\chi \in \mathcal{L}_p(X) \) при некотором \(p \geq 1 \). Тогда справедливо неравенство

\[\lim_{q \to \infty} \|\chi\|_q \geq \|\chi\|_\infty, \]

(4.3)

а если функция принадлежности множества \(E_0(A_\chi) \) также принадлежит \(\mathcal{L}_p(X) \), то

\[\lim_{q \to \infty} \|\chi\|_q = \|\chi\|_\infty. \]

(4.4)
Доказательство. Докажем неравенство (4.3). Фиксируем \(\varepsilon > 0 \). Рассмотрим множество \(E = \{ \|x\| > \|x\|_{\infty} - \varepsilon \} \). Если \(\mu(E) = \infty \), то возьмем его меру измеримое подмножество \(E_1 \), удовлетворяющее условию \(0 < \mu(E_1) < \infty \). Учитывая определение нормы в \(L_\infty(x) \) и локальную конечность меры \(\mu \), это можем сделать всегда. Далее, для всякого \(q \geq p \) получаем неравенство

\[
\|x\|_q \geq \left(\int_{E_1} x^q d\mu \right)^{\frac{1}{q}} > \|x\|_{\infty} - \varepsilon \sqrt[q]{\mu(E_1)}.
\]

Следовательно,

\[
l\lim_{q \to \infty} \|x\|_q \geq \|x\|_{\infty} - \varepsilon \sqrt[q]{\mu(E_1)}.
\]

Так как \(\lim_{q \to \infty} \sqrt[q]{\mu(E_1)} = 1 \), то из полученного неравенства и произвольности \(\varepsilon > 0 \) теперь вытекает справедливость неравенства (4.3).

Если же \(E_0(A_x) \in L_p(X) \), то, очевидно, при любом \(q \geq p \) справедливо неравенство

\[
\|x\|_q = \left(\int_{E_0(A_x)} x^q d\mu \right)^{\frac{1}{q}} \leq \|x\|_{\infty} \cdot \sqrt[q]{\mu(E_0(A_x))}^{\frac{1}{q}} < \infty.
\]

Следовательно,

\[
l\lim_{q \to \infty} \|x\|_q \leq \|x\|_{\infty} \cdot \lim_{q \to \infty} \sqrt[q]{\mu(E_0(A_x))} = \|x\|_{\infty},
\]

что с учетом неравенства (4.3) эквивалентно равенству (4.4). Лемма доказана в полном объеме.

4.3. Теоретико-множественные операции над нечеткими множествами

Следуя \[68\], определим результирующие множества через их функции принадлежности: \(\chi_{A \cup B}(x) = \max \{ \chi_A(x), \chi_B(x) \} \) - функция принадлежности объединения; \(\chi_{A \cap B}(x) = \min \{ \chi_A(x), \chi_B(x) \} \) - функция принадлежности пересечения; \(\chi_{X - A} = 1 - \chi_A(x) \) - функция принадлежности дополнения.

Очевидно, если \(A, B \in \mathcal{P}(X) \), то справедливы включения \(A \cup B, A \cap B \in \mathcal{P}(X) \). Однако, дополнение \(X - A \) принадлежит \(\mathcal{P}(X) \) только в том случае, когда \(\mu(X) < \infty \). Если же \(\mu(X) = \infty \), то функция принадлежности \(\chi_{X - A}(x) \) не суммируема. Это следует из неравенства треугольника \(\|f + g\|_p \leq \|f\|_p + \|g\|_p \) и соотношения \(1 = \chi_A(x) + \chi_{X - A}(x) \).
4.4. Совпадение нечетких множеств

Пусть \(A, B \in \mathcal{A}_1(X) \). Так как для всякого \(x \in X \) и для всякого \(p \geq 1 \) справедливо неравенство \(\chi_{A \cap B}(x) \leq \chi_B(x) \), то имеем

\[
\| \chi_{A \cap B} \|_p \leq \| \chi_B \|_p.
\]

Определение. Назовем неотрицательное число

\[
P \ell_p(A; B) = \frac{\| \chi_{A \cap B} \|_p}{\| \chi_B \|_p},
\]

не превосходящее единицы, \(p \)-правдоподобностью включения \(B \subseteq A \), а число

\[
T_p(A; B) = \min \{ P \ell_p(A; B); P \ell_p(B; A) \}
\]

- \(p \)-надежностью совпадения нечетких множеств \(A \) и \(B \).

Очевидно, при любом \(p \geq 1 \) справедливо равенство \(T_p(A; B) = T_p(B; A) \). Далее, если \(E_0(B) \in \angle_p(X) \) при некотором \(p \geq 1 \), то по лемме 1 имеем:

\[
\lim_{q \to \infty} P \ell_q(A; B) = \frac{\| \chi_{A \cap B} \|_\infty}{\| \chi_B \|_\infty} = P \ell_\infty(A; B).
\]

Очевидно, показатель \(P \ell_\infty(A; B) \) обладает следующим свойством: если \(\| \chi_{A \cap B} \|_\infty = \| \chi_B \|_\infty \), то \(P \ell_\infty(A; B) = 1 \). Равенство \(\| \chi_{A \cap B} \|_\infty = \| \chi_B \|_\infty \) выполняется тогда и только тогда, когда для всякого \(\varepsilon > 0 \) справедливо условие \(\mu(E_{M-\varepsilon}(A \cap B) \cap E_{M-\varepsilon}(B)) > 0 \). Заметим, что равенство \(P \ell_\infty(A; B) = 1 \) может выполняться и тогда, когда при всех \(p \geq 1 \) будет строгое неравенство \(P \ell_p(A; B) < 1 \), потому что показатель \(P \ell_\infty(A; B) \) характеризует правдоподобность включения \(A \subseteq B \) только по значению функций принадлежности в точках максимума правдоподобия, в то время как показатель \(P \ell_q(A; B) \) при \(q < \infty \) дает оценку правдоподобности включения \(A \subseteq B \) по всей совокупности значений функций принадлежности \(\chi_A \) и \(\chi_B \).

4.5. Нечеткие множества, построенные по методу интервального преобразования случайных величин

Пусть \(\xi : \Omega \to \mathbb{R}^m \) есть некоторая \(m \)-мерная вещественная случайная величина, \(\mu \) - соответствующая вероятностная мера на \(\Omega \) и \(\Phi : \mathbb{R}^m \to [0,1] \) - функция распределения этой случайной величины. Определим отображение \(\lambda_\phi : \mathbb{R}^m \to [0,1] \) формулой (см. [46])
где через \(\int_{x-a/2}^{x+a/2} \Phi(t) \) обозначен интеграл Стильтьеса по параллелепипеду \(X_a = [x-a/2; x+a/2] \).

Число \(\lambda_a(x) \) представляет собой вероятность того, что случайная величина \(\xi \) принимает значения из параллелепипеда \(X_a \). Здесь \(a = (a_1, \ldots, a_m) \) - вектор с положительными компонентами. Отображение \(\lambda_a \) при любом \(a > 0 \) представляет собой функцию принадлежности некото рого нечеткого множества \(A \), которое обозначим \(A = F_a(\xi) \). Это множество порождено интервальным преобразованием (4.8) случайной величины \(\xi \). Определенное таким образом отображение

\[
F_a : (\mathbb{R}^m)^2 \rightarrow \mathcal{L}(\mathbb{R}^m)
\]

обладает рядом математических свойств, которые сформулированы в [32]. В частности, согласно лемме 2 (см. [32], стр. 26), для интервального преобразования \(F_a(\xi) \) любой случайной величины \(\xi \) справедливо равенство

\[
\left| \lambda_a \right| = \prod_{k=1}^m a_k .
\]

Рассмотрим две случайных величины \(\xi_1, \xi_2 \). Пусть \(\lambda_{a_1}, \lambda_{a_2} \) - их интервальные преобразования, а \(A_1, A_2 \) - результирующие нечеткие множества. Тогда из формул (4.5)-(4.6) с учетом (4.10) получаем

\[
P_{T_1}(A_1; A_2) = P_{T_1}(A_2; A_1) = T_1(A_1; A_2).
\]

Определение. Величину \(T_1(A_1; A_2) \) будем называть надежностью нечеткого совпадения распределений случайных величин \(\xi_1, \xi_2 \).

4.6. Случайные величины, порожденные суммируемыми нечеткими множествами

Используя функцию принадлежности \(\chi \) суммируемого по Лебегу нечеткого множества \(A \subseteq \mathbb{R}^m \), определим теперь функцию \(\Phi(x) \) по формуле

\[
\Phi(x_1, x_2, \ldots, x_m) = \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} \ldots \int_{-\infty}^{x_m} \chi(t) \mu(t) \|x\|_2 .
\]
Очевидно, \(\Phi(x) \) представляет собой функцию распределения некоторой \(m \)-мерной случайной величины \(\xi: \Omega \to R^m \). Обозначим эту случайную величину, порожденную нечетким множеством \(A \), через \(\xi = P(A) \). Отображение

\[
P : \mathbb{R}^m \to (\mathbb{R}^m)^m
\]

обладает рядом математических свойств, часть из которых сформулирована в работе [32]. В частности, для отображения \(P \circ F_u \) справедливо следующее утверждение.

Лемма 4.2. Если положить \(P(F_u(\xi)) = \eta \), то, как показано в [32], будут справедливы следующие равенства:

\[
M \eta_k = M \xi_k, \quad D \eta_k = D \xi_k + \frac{a^2}{12}, \quad Cov(\eta_i, \eta_k) = Cov(\xi_i, \xi_k), \quad i \neq k,
\]

где через \(M \xi \) обозначено математическое ожидание, через \(D \xi \) - дисперсия случайной величины \(\xi \), через \(Cov(\xi_i, \xi_k) \) - ковариация случайных величин \(\xi_1 \) и \(\xi_2 \).

4.7. Стохастическая процедура приближенного вычисления функции принадлежности нечеткого множества

Для приближенного вычисления функции принадлежности суммируемого нечеткого множества \(A \subseteq R^m \) с функцией принадлежности \(\chi \) предлагается использовать следующую двухшаговую стохастическую процедуру.

Шаг 1. Генерируется выборка \(\xi_1, \xi_2, ..., \xi_N \). \(\xi_k \in R^m \) значений случайной величины \(\xi = P(\chi) \).

Шаг 2. Выполняется приближенное интервальное преобразование \(F_u(\xi) \) с использованием эмпирической функции распределения \(\Phi_N(x) \), где \(a > 0 \) подбирается из условия \(\prod_{k=1}^m a_k = \|x\| \).

Экспериментальная проверка предлагаемой процедуры

Для экспериментальной проверки этой процедуры было взято нечеткое множество \(A \) на вещественной прямой с функцией принадлежности

\[
\chi(x) = \begin{cases}
0, & x < 0 \\
0.5 \times, & 0 \leq x \leq 2 \\
3 - x, & 2 < x \leq 3 \\
0, & x > 3,
\end{cases}
\]

сгенерирована выборка значений случайной величины \(\xi = P(\chi) \) объема \(N = 30 \) и выполнено обратное преобразование \(F_u \) при \(a = 1.5 \). Результаты вычислений представлены на рисунке 4.1.
Рис. 4.1. Приближенное построение функции принадлежности нечеткого множества \(A \) с использованием стохастического алгоритма при \(N = 30 \).

Как видно из приведенного рисунка, качество построения функции принадлежности с использованием стохастического алгоритма вполне приемлемое даже при объеме выборки \(N = 30 \).

Если требуется более высокая точность, то надо брать выборки большего объема.

4.8. Стохастический алгоритм расчетов по межотраслевой модели с нечеткими параметрами

Стохастический алгоритм расчетов по межотраслевой модели с нечеткими параметрами, описанной в [32], основан на применении предложенной в предыдущем разделе двухшаговой стохастической процедуры. В целом, предлагаемый стохастический алгоритм будет состоять из последовательности следующих операций.

Шаг 1. Преобразование каждого нечеткого параметра в случайную величину по следующим математическим формулам: \(\zeta_k = P(\chi_k) \), где \(\chi_k(i) \) - функция принадлежности \(k \)-го нечеткого параметра межотраслевой модели.

Шаг 2. Генерация выборок заданного объема \(N \) для каждой из полученных на шаге 1 случайной величины \(\{\zeta_k^n, n = 1, \ldots, N\} \).

Шаг 3. Вычисление по межотраслевой модели с четкими параметрами набора результирующих показателей \(x_n \) для каждого выборочного значения нечетких параметров.

Шаг 4. Оценка параметра \(a \) обратного преобразования \(F_a \). Если все нечеткие параметры межотраслевой модели представляют треугольными числами, то параметр \(a \), согласно стохастической процедуре, при больших \(N \) задается равным половине размаха выборки \(\{x_n, n = 1, \ldots, N\} \).
Шаг 5. Обратное преобразование выборки результирующих показателей \(\{x_n, \quad n=1,\ldots,N\} \) в нечеткое множество \(F_{\alpha}(\{x_n\}) \)

4.9. Нечеткая оценка надежности прогнозных экономических показателей

Предложенная в формулах (4.5), (4.6), (4.8)-(4.10), (4.11) методика применяется для оценки надежности экономических прогнозов. Вариантные расчеты по стохастическому алгоритму были выполнены по межотраслевой модели с нечеткими параметрами, описанной в [32]. В качестве примера рассматривался расчет обоснования роста валового выпуска за период 2006-2010 гг. с темпом 145%. Числу 1.45 было дано нечеткое описание на интервале длины 0,5 с центром в точке 1.45 и функцией принадлежности, изображенной на рис. 4.1. Была принята гипотеза о нечетком определении следующих параметров \(b_k, \quad k=1,\ldots,5 \):

Таблица 4.1. Уровень четкости параметров ДММ.

<table>
<thead>
<tr>
<th>Наименование параметра</th>
<th>Уровень четкости</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ввод основных фондов</td>
<td>0.9</td>
</tr>
<tr>
<td>Сальдо внешней торговли</td>
<td>0.9</td>
</tr>
<tr>
<td>Материалоемкости валового выпуска</td>
<td>0.9</td>
</tr>
<tr>
<td>Фондоемкость валового выпуска</td>
<td>0.9</td>
</tr>
<tr>
<td>Производительность труда</td>
<td>0.9</td>
</tr>
</tbody>
</table>

в виде треугольных чисел с функциями принадлежности

\[
\chi_k(t) = \begin{cases} 0, & t < b_k^1 \\ \frac{t-b_k^0}{b_k^1-b_k^0}, & b_k^1 \leq t \leq b_k^0 \\ 1- \frac{t-b_k^0}{b_k^2-b_k^0}, & b_k^0 \leq t \leq b_k^2 \\ 0, & t > b_k^2, \end{cases}
\]

где \(b_k^0 \) - статистическое значение \(k \)-го показателя из списка, \(b_k^1 = 0.9 \cdot b_k^0, \quad b_k^2 = 1.1 \cdot b_k^0 \).

Для генерации выборки случайной величины \(\xi_k = p(\chi_k) \) использовался стандартный генератор равномерно распределенных на отрезке \([0;1]\) чисел (который обозначим \(U[0;1] \)). Пусть \(u_n \) - \(n \)-е число, сгенерированное оператором \(U[0;1] \). Если обозначить через \(\Phi_k(t) \) функцию распределения случайной величины \(\xi_k \), то \(n \)-й элемент выборки \(\xi_k^n \) вычислялся по формуле

\[
\xi_k^n = \Phi_k^{-1}(u_n).
\]
Замена нечетких показателей \(b_k \) на выборочные значения \(\xi_k^n \) превращает межотраслевую модель с нечеткими параметрами из [32] в обычную межотраслевую модель, в которой все параметры заданы четко. Результаты вариантных расчетов по межотраслевой модели с четкими параметрами были преобразованы с помощью \(F_a \), где \(a \) положили равным половине размаха выборки результирующих показателей \(\{x_n, \ n=1....N\} \), откуда были получены следующие графики.
Рис. 4.2. Нечеткое преобразование выборочных значений темпа роста валового выпуска по формуле (4.8)

Рис. 4.3. Нечеткое преобразование прогнозного значения темпа роста валового выпуска по формуле (4.8).

Надежность совпадения прогнозного и выборочного темпов роста валового выпуска, вычислённая по формуле (4.11), равна: 0.7624.

Ниже идея оценки надежности прогнозных показателей используется для анализа устойчивости вычисляемых макроэкономических показателей.
4.10. Зависимость надежности совпадения случайных величин от точности интервального преобразования

Точностью интервального преобразования случайной величины будем считать значение параметра a в формуле (4.8). Чем меньше значение параметра, тем выше точность.

В результате эмпирического исследования, проведенного над результатами прогнозных расчетов из раздела 6 данной части, выявлен следующий характер зависимости надежности от точности.

Таблица 4.2. Зависимость надежности совпадения прогнозного и выборочного темпов роста валового выпуска за период 2006-2010 гг. от точности их нечеткого преобразования

<table>
<thead>
<tr>
<th>Точность</th>
<th>0,9</th>
<th>0,8</th>
<th>0,7</th>
<th>0,6</th>
<th>0,5</th>
<th>0,4</th>
<th>0,3</th>
<th>0,2</th>
<th>0,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Надежность</td>
<td>0,82</td>
<td>0,81</td>
<td>0,80</td>
<td>0,79</td>
<td>0,76</td>
<td>0,71</td>
<td>0,63</td>
<td>0,46</td>
<td>0,22</td>
</tr>
</tbody>
</table>

Из приведенной таблицы можно сделать вывод, что с увеличением точности надежность совпадения показателей падает.

В общем случае, пусть даны две случайных величины ξ_1, ξ_2, интервальными преобразованиями которых являются $\lambda_{a_1}, \lambda_{a_2}$, а A_{e_1}, A_{e_2} - результатирующие нечеткие множества. Предположим, что функции распределения случайных величин ξ_1, ξ_2 дифференцируемы и плотности

$$p_i(t) = \frac{d\Phi_i}{dt}$$

являются непрерывными функциями.

Тогда справедливо следующее утверждение.

Лемма 2. Если для всякого $t \in R$ имеем равенство

$$p_1(t) \cdot p_2(t) = 0$$

и множества $E_0(p_i)$ ограничены, то

$$\lim_{a \to 0} T_{i_0}(A_{e_1}, A_{e_2}) = 0 .$$

(4.14)

Доказательство. Так как функции $p_i(t)$ непрерывны, то множества $E_0(p_i)$ открыты и, по предположению леммы, ограничены, следовательно, открыто и ограниченно множество $E = E_0(p_1) \cup E_0(p_2)$, а замыкание $cl(E)$ множества E компактно. Отсюда вытекает равномерная непрерывность функций $p_i(t)$ на всей вещественной прямой, так как $p_i(t) > 0$ на компакте $cl(E)$, вне которого $p_i(t) = 0$.

80
Фиксируем произвольное \(\varepsilon > 0 \). По нему определим \(\delta > 0 \) такое, что как только \(|t-u| < \delta \), то
\[|p_i(t) - p_i(u)| < \varepsilon. \] Согласно формуле (4.8),

\[\tilde{x}^i(t) = \int_{t-a/2}^{t+a/2} p_i(u) du. \] (4.15)

Выберем \(a < \delta \). Если \(t \notin E_0(p_i) \), то будет справедливо неравенство

\[\tilde{x}^i(t) = \int_{t-a/2}^{t+a/2} p_i(u) du \leq a \cdot \varepsilon. \]

По условию леммы справедливо одно из двух утверждений: либо \(t \notin E_0(p_1) \), либо \(t \notin E_0(p_2) \). Следовательно, при \(a < \delta \), с учетом формулы (4.12), либо \(\tilde{x}^1(t) \leq a \cdot \varepsilon \), либо \(\tilde{x}^2(t) \leq a \cdot \varepsilon \), т.е. для всякого \(t \in \mathbb{R} \) справедливо неравенство \(\tilde{x}(t) = \min \{ \tilde{x}^1(t), \tilde{x}^2(t) \} \leq a \cdot \varepsilon \). В то же время, \(E_0(\lambda) \) содержит в компактном множестве \(E_a = \left\{ u \in \mathbb{R}^m \left| \|u\| \leq a \right\} \right\} \), мера Лебега которого \(\rho(E_a) \) убывает при уменьшении \(a \). Следовательно, при \(a < \delta \) для надежности \(T_1(A^1, A^2) \) справедлива оценка

\[T_1(A^1, A^2) = \frac{\| \lambda \|}{\| \lambda \|} \leq \frac{a \cdot \varepsilon \cdot \rho(E_a)}{a} = \varepsilon \cdot \rho(E_a). \]

Доказательство леммы теперь завершается ссылкой на произвольность выбора \(\varepsilon > 0 \).

4.11. Обобщенные интегральные преобразования случайных величин

Пусть снова \(\xi : \Omega \rightarrow \mathbb{R}^m \) есть некоторая \(m \)-мерная вещественная случайная величина, \(\mu \) - соответствующая вероятностная мера на \(\Omega \) и \(\Phi : \mathbb{R}^m \rightarrow [0,1] \) - функция распределения этой случайной величины. Рассмотрим более общий, по сравнению с формулой (1.8), метод преобразования случайной величины \(\xi \) в нечеткое множество. Возьмем некоторое измеримое отображение

\[f : \mathbb{R}^m \times \mathbb{R}^m \rightarrow [0,1], \]

удовлетворяющее условиям:

\[\int_{\mathbb{R}^m} f(x,t) dx = a \] (4.16)

при любом \(t \in \mathbb{R}^m \) и интеграл Стильтьеса
\[
\chi(x) = \int_{\mathbb{R}^n} f(x, t) d\Phi(t) \quad (4.17)
\]

существует при любом \(x \in \mathbb{R}^m \).

Формулой (4.17) задается интегральное преобразование функции распределения \(\Phi(t) \) случайной величины \(\xi \). Легко видеть, что результирующая функция \(\chi(x) \) при каждом \(x \in \mathbb{R}^m \) удовлетворяет условию \(0 \leq \chi(x) \leq 1 \), т.е. является функцией принадлежности некоторого нечеткого множества. Действительно, по определению \(f(x, t) \) для каждого \((x, t) \in \mathbb{R}^m \times \mathbb{R}^m \) имеем \(0 \leq f(x, t) \leq 1 \). Следовательно,

\[
0 \leq \chi(x) = \int_{\mathbb{R}^m} f(x, t) d\Phi(t) \leq \int_{\mathbb{R}^m} d\Phi(t) = 1.
\]

Определение. Нечеткое множество, функцией принадлежности которого является функция \(\chi(x) \), вычисленная по формуле (4.17), будем называть интегральным преобразованием случайной величины \(\xi \).

Ясно, что интервальное преобразование (4.8) случайной величины \(\xi \) является частным случаем интегрального преобразования (4.17), или, иными словами, преобразование (4.17) случайной величины \(\xi \) является обобщением преобразования (4.8).

Лемма 3. Функция \(\chi(x) \), вычисленная по формуле (4.17), суммируема по Лебегу на \(\mathbb{R}^m \), причем справедливо равенство

\[
\|x\| = a.
\]

Доказательство. По определению нормы \(\| \cdot \| \) имеем следующие равенства

\[
\|x\| = \int_{\mathbb{R}^m} \chi(x) dx = \int_{\mathbb{R}^m} dx \int_{\mathbb{R}^m} f(x, t) d\Phi(t) = \int_{\mathbb{R}^m} dx \int_{\Omega} f(x, \xi(\omega)) d\mu.
\]

Далее, учитывая равномерную ограниченность функции \(f(x, t) \) и конечность меры \(\mu \), применяем теорему Фубини и получаем

\[
\int_{\Omega} dx \int_{\mathbb{R}^m} f(x, \xi(\omega)) d\mu = \int_{\mathbb{R}^m} d\mu \int_{\Omega} f(x, \xi(\omega)) dx.
\]

Согласно формуле (16), при любом \(\omega \in \Omega \) внутренний интеграл равен \(a \). Следовательно,

\[
\int_{\Omega} d\mu \int_{\mathbb{R}^m} f(x, \xi(\omega)) dx = a \int_{\Omega} d\mu = a.
\]

и лемма 3 доказана.

Далее следуют достаточные условия непрерывности функции \(\chi(x) \).
Лемма 4. Если функция \(f(x,t) \) непрерывна по \(x \) равномерно относительно \(t \), то \(\chi(x) \) непрерывна.

Доказательство. Фиксируем точку \(x_0 \in \mathbb{R}^m \) и число \(\varepsilon > 0 \). Из равномерной непрерывности функции \(f(x,t) \) вытекает существование числа \(\delta > 0 \) такого, что если \(\|x - x_0\| < \delta \), то \(|f(x,t) - f(x_0,t)| < \varepsilon \) сразу для всех \(t \). Теперь, если \(|x - x_0| < \delta \), то

\[
|\chi(x) - \chi(x_0)| = \int |f(x,\xi(\omega)) - f(x_0,\xi(\omega))| \, d\mu \leq \int |f(x,\xi(\omega)) - f(x_0,\xi(\omega))| \, d\mu
\]

Теперь, учитывая неравенство \(|f(x,\xi(\omega)) - f(x_0,\xi(\omega))| < \varepsilon \) почти при каждом \(\omega \in \Omega \), окончательно получаем

\[
|\chi(x) - \chi(x_0)| < \varepsilon \int |f(x,\xi(\omega)) - f(x_0,\xi(\omega))| \, d\mu = \varepsilon.
\]

Лемма доказана.

Лемма 5. Если функция \(f(x,t) \) непрерывна как функция двух переменных, то \(\chi(x) \) непрерывна.

Доказательство. Фиксируем точку \(x_0 \in \mathbb{R}^m \) и число \(\varepsilon > 0 \). По теореме Кантора из непрерывности функции \(f(x,t) \) следует ее равномерная непрерывность на компактах, в частности, на замкнутых параллелепипедах \(Q = \{ (x,t) | a \leq x \leq b; c \leq t \leq d \} \). Выберем вектора \(c \) и \(d \) из условия:

\[
\int_{c}^{d} |\partial \Phi(t)| > 1 - \frac{2\varepsilon}{3},
\]

а вектора \(a \) и \(b \) - из условия \(a < x_0 < b \).

Выберем число \(\delta > 0 \) таким, чтобы все точки окрестности \(\|x - x_0\| < \delta \) удовлетворяли условию \(a < x < b \) и \(|f(x,t) - f(x_0,t)| < \varepsilon/3 \) сразу для всех \(t \) из отрезка \(c \leq t \leq d \). Теперь, если \(|x - x_0| < \delta \), то

\[
|\chi(x) - \chi(x_0)| = \int_{\mathbb{R}^m} |f(x,t) - f(x_0,t)| \, d\Phi(t) \leq \\
\leq \int_{\mathbb{R}^m} |f(x,t) - f(x_0,t)| \, d\Phi(t) + \int_{\mathbb{R}^m \setminus [c,d]} |f(x,t) - f(x_0,t)| \, d\Phi(t).
\]

По выбору числа \(\delta > 0 \) и параллелепипеда \([c:d] \) получаем оценку первого интеграла

\[
\int_{c}^{d} |f(x,t) - f(x_0,t)| \, d\Phi(t) \leq \left(1 - \frac{2\varepsilon}{3} \right) \frac{\varepsilon}{3} < \frac{\varepsilon}{3}.
\]

Для второго интеграла получаем
Из полученных оценок окончательно выводим

$$|\chi(x) - \chi(x_0)| < \frac{\varepsilon}{3} + \frac{2\varepsilon}{3} = \varepsilon.$$

Лемма доказана.

Лемма 6. Если случайная величина ξ имеет непрерывное распределение с плотностью $p(t) \in L_\infty(R^n)$, при каждом фиксированном x $f(x,t)$ суммируема по Лебегу как функция от t и для каждого $x_0 \in R^n$

$$\lim_{x \to x_0} \int_{R^n} [f(x,t) - f(x_0,t)] \, dt = 0,$$

(4.18)

то $\chi(x)$ непрерывна.

Доказательство. Используя неравенство (4.1), получаем

$$|\chi(x) - \chi(x_0)| = \left| \int_{R^n} [f(x,t) - f(x_0,t)] \, d\Phi(t) \right| =$$

$$= \left| \int_{R^n} [f(x,t) - f(x_0,t)] \, dt \right| \leq \int_{R^n} [f(x,t) - f(x_0,t)] \, dt \cdot \|p\|_c.$$

Теперь применяем (4.18) и получаем окончательно

$$\lim_{x \to x_0} \chi(x) = \chi(x_0).$$

Лемма доказана.
5. Информационная база за 2007 г. динамической межотраслевой модели экономики России с нечеткими параметрами

5.1. Структура информационной базы ДММ

Информационная база ДММ включает следующие элементы, часть из которых в зависимости от поставленных целей исследования может быть описана нечетким образом.

1. Вектор произведенного валового выпуска отраслей номенклатуры модели в базовом году $x_j(0), j=1,\ldots,n$.

2. Матрица основных фондов на конец базового года $F_i^j(0), j=1,\ldots,n; i=1,\ldots,k$.

3. Вектор трудовых ресурсов в базовом году $L_h(0), h=1,\ldots,l$.

4. Матрица трудоемкости продукции в отраслях номенклатуры модели в базовом году $C_{hj}(0), h=1,\ldots,l; j=1,\ldots,n$.

5. Матрица изменения трудоемкости продукции в отраслях номенклатуры модели $\dot{C}_{hj}, h=1,\ldots,l; j=1,\ldots,n$.

6. Матрица фондоемкости продукции в отраслях номенклатуры модели в базовом году $b_i(0), i=1,\ldots,k; j=1,\ldots,n$.

7. Матрица изменения фондоемкости продукции в отраслях номенклатуры модели $\dot{b}_i, i=1,\ldots,k; j=1,\ldots,n$.

8. Вектор чистого экспорта для базового года и для каждого года прогнозного периода $S_j(t), j=1,\ldots,n; t=1,\ldots,T$.

9. Вектор прироста запасов для базового года и для каждого года прогнозного периода $\Delta z_j(t), j=1,\ldots,n; t=1,\ldots,T$.

10. Вектор потерь для базового года и для каждого года прогнозного периода $P_j(t), j=1,\ldots,n; t=1,\ldots,T$.

11. Матрица величин строительного лага $G_i, i=1,\ldots,k; j=1,\ldots,n$.

12. Коэффициенты структуры распределенного лага $\mu_i(t, \tau)$.
5.2. Построение информационной базы ДММ за 2007 г.

Построение информационной базы ДММ разделяется на следующие этапы:
1. Сбор необходимой статистической информации.
2. Определение номенклатуры отраслей национальной экономики, используемой в ДММ.
3. Оценка отраслевых объемов производства и использования продукции отраслей за 2003 год, включая ее дифференциацию на выпуск первого и второго подразделений.
4. Оценка коэффициентов материоемкости произведенного продукта в межотраслевом разрезе за 2003 год.
5. Оценка баланса основных производственных фондов в выделенной номенклатуре отраслей с разделением на активную и пассивную части за 2003 год.
6. Проведение балансировки всех элементов информационной базы ДММ за 2003 г.
8. На основе результатов имитационных расчетов по ДММ осуществляется построение информационной базы за 2007 г.

Выбор вышеназванной последовательности этапов за 2007 г. был обусловлен тем обстоятельством, что на момент разработки информационной базы последний опубликованный межотраслевой баланс экономики России относился к 2003 г.

5.2.1. Сбор необходимой статистической информации

На предварительном этапе построения информационной базы был осуществлен сбор необходимой макроэкономической, отраслевой и межотраслевой статистической информации.

В связи с наличием определенного запаздывания составления межотраслевой информации ФСГС (Федеральная служба государственной статистики) России, в качестве основы для оценки межотраслевых потоков продукции и структуры отраслевых произведенных и использованных выпусков продукции была взята «Система таблиц «Затраты-выпуск» России за 2003 год», опубликованная ФСГС России в 2006 году [41].

Для оценки производства и использования продукции фондосоздающих отраслей была использована официальная статистическая информация по инвестиционной сфере экономики России, опубликованная в справочниках Российский статистический ежегодник за 2006 [38], Инвестиции в России за 2005 г. [18] и Инвестиции в России за 2001 г. [17].
В целях оценки баланса основных производственных фондов по отраслям национальной экономики дополнительно в ФСГС России была запрошена информация о величине и видовой структуре основных фондов экономики России за 2005 г. (см. [41], [26]).

5.2.2. Номенклатура отраслей национальной экономики

Определение номенклатуры отраслей национальной экономики для ДММ осуществлялось исходя из наличия официальной статистической информации, а также на основе методологических принципов, заложенных при построении модели. В ДММ выделяются фондосознающие (производство машин и оборудования, строительство зданий и сооружений) и нефондосознающие (металлообработка, нефондосознающее строительство) отрасли машиностроения и строительства. Существующие ранее в составе номенклатуры отрасли, производящие капитальный ремонт машин и оборудования и капитальный ремонт зданий и сооружений перестают выделяться в качестве отдельных отраслей и входят в состав фондосознающих отраслей, так как ФСГС с 2002 года в составе инвестиций в основной капитал не выделяет отдельной позицией величину инвестиций, направленных на капитальный ремонт. Под нефондосознающей отраслью строительства имеется ввиду подотрасль, производящая текущий строительный ремонт. Продукция этой отрасли показана в межотраслевом балансе экономики России [41] в первом квадранте и представляет собой сумму элементов строки «Продукция строительства» в этом квадранте.

Большинство отраслей номенклатуры модели дифференцировалось на подотрасли, производящие продукцию первого и второго подразделений.

С учетом вышесказанного, номенклатура отраслей национальной экономики в ДММ представлена следующими отраслями:
1. Производство машин и оборудования
2. Строительство зданий и сооружений
3. Электро и тепло энергетика
4. Нефтедобыча
5. Нефтепереработка
6. Газовая промышленность
7. Прочие отрасли топливной промышленности
8. Черная металлургия
9. Цветная металлургия
10. Химическая и нефтехимическая промышленность
11. Металлообработка
12. Лесная, деревообрабатывающая и целлюлозно-бумажная промышленность
13. Промышленность строительных материалов
14. Легкая промышленность
15. Пищевая промышленность
16. Прочие отрасли промышленности
17. Нефондосоздающая отрасль строительства
18. Сельское и лесное хозяйство
19. Транспорт и связь
20. Торгово-посреднические услуги (включая услуги общественного питания)
21. Прочие виды деятельности
22. Производство нематериальных услуг

Полная номенклатура отраслей ДММ с учетом дифференциации производства в большинстве отраслей между первым и вторым подразделениями включает 40 отраслей: 22 отрасли I подразделения и 18 отраслей II подразделения.

5.2.3. Оценка отраслевых объемов производства и использования валовой продукции

Первоначально была осуществлена оценка использованной валовой продукции первого подразделения отраслей национальной экономики (см. таблицу 5.1).

В качестве оценки использованного валового выпуска нефондосоздающих отраслей первого подразделения (ИВВ1) взята сумма следующих показателей таблицы 2.1 «Системы таблиц «Затраты-выпуск» России за 2003 год»: \(\bar{x_j(t)} \) = промежуточный спрос + изменение запасов материальных оборотных средств + чистое приобретение ценностей (ЧПЦ), \(k < j \leq m \).

Из приведенного выше соотношения видно, что в состав использованного продукта не включается величина экспорта. Объем использованной валовой продукции фондосоздающих отраслей осуществлялся отдельно на основе статистических данных об объеме инвестиций в основной капитал.
Таблица 5.1. Оценка использованного валового выпуска I подразделения отраслей национальной экономики России в 2003 году (в млн. руб., в ценах 2003 года) *

<table>
<thead>
<tr>
<th></th>
<th>Промежуточный спрос</th>
<th>Прирост запасов мат. обор. средств и ЧПЦ 2)</th>
<th>Использованный валовой продукт I подразделения – всего</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Производство машин и оборудования</td>
<td>0</td>
<td>0</td>
<td>1053 750</td>
</tr>
<tr>
<td>2. Строительство зданий и сооружений</td>
<td>0</td>
<td>0</td>
<td>1532082</td>
</tr>
<tr>
<td>3. Электроэнергетика</td>
<td>819 412</td>
<td>0</td>
<td>819 412</td>
</tr>
<tr>
<td>4. Нефтедобыча</td>
<td>514 832</td>
<td>-3 729</td>
<td>511 103</td>
</tr>
<tr>
<td>5. Нефтепереработка</td>
<td>875 986</td>
<td>1 875</td>
<td>877 861</td>
</tr>
<tr>
<td>6. Газовая промышленность</td>
<td>453 136</td>
<td>3 073</td>
<td>456 209</td>
</tr>
<tr>
<td>7. Прочие отрасли топливной промышленности</td>
<td>271 045</td>
<td>2 504</td>
<td>273 549</td>
</tr>
<tr>
<td>8. Черная металлургия</td>
<td>685 490</td>
<td>8 284</td>
<td>693 774</td>
</tr>
<tr>
<td>9. Цветная металлургия</td>
<td>536 415</td>
<td>-6 161</td>
<td>530 254</td>
</tr>
<tr>
<td>10. Химия и нефтехимия</td>
<td>630 243</td>
<td>18 488</td>
<td>648 731</td>
</tr>
<tr>
<td>11. Металлообработка</td>
<td>1 194 6411)</td>
<td>-236 589</td>
<td>958 052</td>
</tr>
<tr>
<td>12. Лесная, деревообр-ая и цел.-бум. промышленность</td>
<td>368 377</td>
<td>28 562</td>
<td>396 938</td>
</tr>
<tr>
<td>13. Промышленность строительных материалов</td>
<td>430 597</td>
<td>14 343</td>
<td>444 940</td>
</tr>
<tr>
<td>14. Легкая промышленность</td>
<td>177 663</td>
<td>9 021</td>
<td>186 685</td>
</tr>
<tr>
<td>15. Пищевая промышленность</td>
<td>781 052</td>
<td>60 675</td>
<td>841 726</td>
</tr>
<tr>
<td>16. Прочие отрасли промышленности</td>
<td>180 524</td>
<td>44 549</td>
<td>225 072</td>
</tr>
</tbody>
</table>

* Отрасли, указанные в строчках 1, 2, 12, 13, 16, не включены в расчет российского ВВП.

** Подразделение I: производство промежуточного продукта для всего общества (использованного валового продукта с учетом прироста запасов мат. обор. средств и ЧПЦ).
17. Нефондосоздающая отрасль строительства | 331 524\(^1\) | 0 | 331 524
18. Сельское и лесное хозяйство | 727 342 | 43 957 | 771 300
19. Транспорт и связь | 807 450 | 0 | 807 450
20. Торговля | 729 463 | 0 | 729 463
21. Прочие материальные услуги | 183 964 | 3 202 | 187 166
22. Нематериальные услуги | 1 016 019 | 92 034 | 1 108 053
Всего | **11 715 174** | **84 088** | **14 385 094**

\(^1\) Оценка на основе системы таблиц «Затраты-выпуск» России за 2003 год [41, с. 14-19].
2) оценки несколько отличаются от статистических данных, приведенных в системе таблиц «Затраты-выпуск», так как была произведена корректировка указанных показателей для балансировки валового использованного продукта в силу имеющихся расходов в статистике инвестиций в основной капитал и в системе таблиц «Затраты-выпуск» за 2003 год.

Для оценки использованного валового продукта отраслей второго подразделения использовалась информация системы таблиц «Затраты-выпуск» о суммарных расходах на конечное потребление домашних хозяйств, государственных учреждений и некоммерческих организаций, обслуживающих домашние хозяйства (см. таблицу 5.2). При этом использовалось предположение, что продукция отраслей «Производство машин и оборудования» полностью относится к первому подразделению. Что касается отраслей «Нефтедобыча» и «Цветная металлургия», то по данным таблицы «Затраты - выпуск» за 2003 г. продукция этих отраслей не используется для формирования расходов на конечное потребление.
Таблица 5.2. Оценка использованного валового выпуска II подразделения отраслей национальной экономики России в 2003 году (в млн. руб., в ценах 2003 года) *

<table>
<thead>
<tr>
<th></th>
<th>Использованный валовой продукт II подразделения 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Производство машин и оборудования</td>
<td>0</td>
</tr>
<tr>
<td>2. Строительство зданий и сооружений</td>
<td>37 806</td>
</tr>
<tr>
<td>3. Электроэнергетика</td>
<td>118 220</td>
</tr>
<tr>
<td>4. Нефтедобыча</td>
<td>0</td>
</tr>
<tr>
<td>5. Нефтепереработка</td>
<td>101 048</td>
</tr>
<tr>
<td>6. Газовая промышленность</td>
<td>27 969</td>
</tr>
<tr>
<td>7. Прочие отрасли топливной промышленности</td>
<td>7 624</td>
</tr>
<tr>
<td>8. Черная металлургия</td>
<td>573</td>
</tr>
<tr>
<td>9. Цветная металлургия</td>
<td>0</td>
</tr>
<tr>
<td>10. Химия и нефтехимия</td>
<td>220 349</td>
</tr>
<tr>
<td>11. Металлообработка 2)</td>
<td>585 589</td>
</tr>
<tr>
<td>12. Лесная, деревообраб. и цел.-бум. промышленность</td>
<td>120 899</td>
</tr>
<tr>
<td>13. Промышленность строительных материалов</td>
<td>44 020</td>
</tr>
<tr>
<td>14. Легкая промышленность</td>
<td>884 871</td>
</tr>
<tr>
<td>15. Пищевая промышленность</td>
<td>2 146 950</td>
</tr>
<tr>
<td>16. Прочие отрасли промышленности</td>
<td>46 932</td>
</tr>
<tr>
<td>17. Нефондосоздающая отрасль строительства</td>
<td>0</td>
</tr>
<tr>
<td>18. Сельское и лесное хозяйство</td>
<td>659 078</td>
</tr>
<tr>
<td>19. Транспорт и связь</td>
<td>559 677</td>
</tr>
<tr>
<td>20. Торговля</td>
<td>175 731</td>
</tr>
<tr>
<td>21. Прочие материальные услуги</td>
<td>46 275</td>
</tr>
<tr>
<td>22. Нематериальные услуги</td>
<td>3 243 253</td>
</tr>
<tr>
<td>Всего</td>
<td>9 026 863</td>
</tr>
</tbody>
</table>

1) при оценке ИВПII данные по статьям «корректировки конечного потребления домашних хозяйств» разнесены по отраслевым ИВПII пропорционально доле отраслей в суммарных расходах на конечное потребление.

2) к использованному валовому продукту второго подразделения отрасли металлообработка отнесен весь объем расходов на конечное потребление продукции отрасли «Машины и оборудование, продукты металлообработки», приведенный в системе таблиц «Затраты-выпуск» за 2003 год.

Произведенная оценка использованного валового продукта первого и второго подразделения отраслей национальной экономики позволяет получить оценку использованного валового продукта в целом (см. таблицу 5.3).
Таблица 5.3. Оценка использованного валового продукта отраслей национальной экономики России в 2003 году (в млн. руб., в ценах 2003 года) *

<table>
<thead>
<tr>
<th>Наименование отрасли</th>
<th>ИВП I</th>
<th>ИВП II</th>
<th>Итого – ИВП</th>
<th>Доля II подр. в ИВП, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Производство машин и оборудования (ф/с)</td>
<td>1053 750</td>
<td>0</td>
<td>1053 750</td>
<td>0,0</td>
</tr>
<tr>
<td>2. Строительство зданий и сооружений (ф/с)</td>
<td>1532082</td>
<td>37 806</td>
<td>1569 888</td>
<td>2,4</td>
</tr>
<tr>
<td>3. Электроэнергетика</td>
<td>819 412</td>
<td>118 220</td>
<td>937632</td>
<td>12,6</td>
</tr>
<tr>
<td>4. Нефтедобыча</td>
<td>511 103</td>
<td>0</td>
<td>511 103</td>
<td>0,0</td>
</tr>
<tr>
<td>5. Нефтепереработка</td>
<td>877 861</td>
<td>101 048</td>
<td>978 909</td>
<td>10,3</td>
</tr>
<tr>
<td>6. Газовая промышленность</td>
<td>456 209</td>
<td>27 969</td>
<td>484 178</td>
<td>5,8</td>
</tr>
<tr>
<td>7. Прочие отрасли топливной промышленности</td>
<td>273 549</td>
<td>7 624</td>
<td>281 173</td>
<td>2,7</td>
</tr>
<tr>
<td>8. Черная металлургия</td>
<td>693 774</td>
<td>573</td>
<td>694 347</td>
<td>0,1</td>
</tr>
<tr>
<td>9. Цветная металлургия</td>
<td>530 254</td>
<td>0</td>
<td>530 254</td>
<td>0,0</td>
</tr>
<tr>
<td>10. Химия и нефтехимия</td>
<td>648 731</td>
<td>220 349</td>
<td>869 080</td>
<td>25,4</td>
</tr>
<tr>
<td>11. Металлообработка</td>
<td>958 052</td>
<td>585 589</td>
<td>1543 641</td>
<td>37,9</td>
</tr>
<tr>
<td>12. Лесная, деревообраб-ая и цел.-бум. Промышленность</td>
<td>396 938</td>
<td>120 899</td>
<td>517 837</td>
<td>23,3</td>
</tr>
<tr>
<td>13. Промышленность строительных материалов</td>
<td>444 940</td>
<td>44 020</td>
<td>488 960</td>
<td>9,0</td>
</tr>
<tr>
<td>14. Легкая промышленность</td>
<td>186 685</td>
<td>884 871</td>
<td>1071 556</td>
<td>82,6</td>
</tr>
<tr>
<td>15. Пищевая промышленность</td>
<td>841 726</td>
<td>2 146 951</td>
<td>2988 677</td>
<td>71,8</td>
</tr>
<tr>
<td>16. Прочие отрасли промышленности</td>
<td>225 072</td>
<td>46 932</td>
<td>272 004</td>
<td>17,3</td>
</tr>
<tr>
<td>17. Нефондосоздающая отрасль строительства</td>
<td>331 524</td>
<td>0</td>
<td>331 524</td>
<td>0,0</td>
</tr>
<tr>
<td>18. Сельское и лесное хозяйство</td>
<td>771 300</td>
<td>659 078</td>
<td>1430 378</td>
<td>46,1</td>
</tr>
<tr>
<td>19. Транспорт и связь</td>
<td>807 450</td>
<td>559 677</td>
<td>1367 127</td>
<td>40,9</td>
</tr>
<tr>
<td>20. Торговля</td>
<td>729 463</td>
<td>175 731</td>
<td>905 194</td>
<td>19,4</td>
</tr>
<tr>
<td>21. Прочие материальные услуги</td>
<td>187 166</td>
<td>46 275</td>
<td>233 441</td>
<td>19,8</td>
</tr>
<tr>
<td>22. Нематериальные услуги</td>
<td>1 108 053</td>
<td>3 243 253</td>
<td>4351 306</td>
<td>74,5</td>
</tr>
<tr>
<td>Всего</td>
<td>14 385 094</td>
<td>9 026 863</td>
<td>23 411 957</td>
<td>38,6</td>
</tr>
</tbody>
</table>
Построено на основе таблиц 5.1 и 5.2.

Дальнейшее построение информационной базы ДММБ предполагает оценку валового произведенного продукта отраслей национальной экономики (см. табл. 5.5). Для этого была взята информация об отраслевых объемах экспорта и импорта из системы таблиц «Затраты-выпуск» России за 2003 год. Разделение экспорта и импорта на первое и второе подразделения осуществлялось на основе полученных оценок доли второго подразделения в использованном валовом продукте (см. таблицу 5.4).

Таблица 5.4. Оценка экспорта и импорта продукции отраслей национальной экономики России в 2003 году (в млн. руб., в ценах 2003 года) *

<table>
<thead>
<tr>
<th>Экспорт</th>
<th>Импорт</th>
</tr>
</thead>
<tbody>
<tr>
<td>в том числе:</td>
<td>в том числе:</td>
</tr>
<tr>
<td>I подр</td>
<td>II подр</td>
</tr>
<tr>
<td>1. Производство машин и оборудования</td>
<td>102246</td>
</tr>
<tr>
<td>2. Строительство зданий и сооружений</td>
<td>56387</td>
</tr>
<tr>
<td>3. Электроэнергетика</td>
<td>17972</td>
</tr>
<tr>
<td>4. Нефтедобыча</td>
<td>1198329</td>
</tr>
<tr>
<td>5. Нефтепереработка</td>
<td>440534</td>
</tr>
<tr>
<td>6. Газовая промышленность</td>
<td>529361</td>
</tr>
<tr>
<td>7. Прочие отрасли топливной промышленности</td>
<td>53444</td>
</tr>
<tr>
<td>8. Черная металлургия</td>
<td>332517</td>
</tr>
<tr>
<td>9. Цветная металлургия</td>
<td>459513</td>
</tr>
<tr>
<td>10. Химия и нефтехимия</td>
<td>269026</td>
</tr>
<tr>
<td>11. Металлоброборка</td>
<td>314833</td>
</tr>
<tr>
<td>12. Лесная, деревообр-ая и цел.-бум. Промышленность</td>
<td>164693</td>
</tr>
<tr>
<td>13. Промышленность строительных материалов</td>
<td>15328</td>
</tr>
<tr>
<td>14. Легкая промышленность</td>
<td>51768</td>
</tr>
<tr>
<td>15. Пищевая промышленность</td>
<td>170757</td>
</tr>
</tbody>
</table>
16. Прочие отрасли промышленности | 54216 | 44862 | 9354 | 50771 | 42011 | 8760
17. Нефондосоздающая отрасль строительства | 0 | 0 | 0 | 0 | 0 | 0
18. Сельское и лесное хозяйство | 54351 | 29308 | 25043 | 107157 | 57782 | 49375
19. Транспорт и связь | 209478 | 123721 | 85756 | 60894 | 35965 | 24929
20. Торговля | 66740 | 53783 | 12957 | 28918 | 23304 | 5614
21. Прочие материальные услуги | 15399 | 12347 | 3053 | 30778 | 24677 | 6101
22. Нематериальные услуги | 78989 | 20114 | 58875 | 227753 | 57997 | 169756
Всего | 4655880 | 3987911 | 667969 | 44064 | 130 | 2367197 | 2038934

* Оценка на основе системы таблиц «Затраты-выпуск» России за 2003 год [41, с. 14-19] исходя из данных об экспорте продукции отраслей национальной экономики и доле импорта в использованном ресурсе по отраслям национальной экономики. При оценке данные по статьям «корректировки конечного потребления домашних хозяйств» разнесены по отраслевому экспорту и импорту пропорционально доле отраслей в суммарных расходах на конечное потребление.

Полученная оценка отраслевых объемов экспорта и импорта позволяет оценить произведенный валовой продукт (ПВВ) отраслей национальной экономики (см. таблицу 5.5) на основе следующего соотношения: $x_j(t) = \bar{x}_j(t) + S_j(t)$.

Таблица 5.5. Оценка произведенного валового выпуска отраслей национальной экономики России в 2003 году (в млн. руб., в ценах 2003 года) *

<table>
<thead>
<tr>
<th></th>
<th>ПВВ1</th>
<th>ПВВ2</th>
<th>Итого – ПВВ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Производство машин и оборудования</td>
<td>876730</td>
<td>0</td>
<td>876730</td>
</tr>
<tr>
<td>2. Строительство зданий и сооружений</td>
<td>1456219</td>
<td>34542</td>
<td>1490761</td>
</tr>
<tr>
<td>3. Электроэнергетика</td>
<td>826056</td>
<td>119178</td>
<td>945235</td>
</tr>
<tr>
<td>4. Нефтехимическая</td>
<td>1689338</td>
<td>0</td>
<td>1689338</td>
</tr>
<tr>
<td>5. Нефтепереработка</td>
<td>1189335</td>
<td>136901</td>
<td>1326236</td>
</tr>
<tr>
<td>6. Газовая промышленность</td>
<td>942349</td>
<td>57774</td>
<td>1000123</td>
</tr>
<tr>
<td>7. Прочие отрасли топливной промышленности</td>
<td>304686</td>
<td>8491</td>
<td>313178</td>
</tr>
<tr>
<td>8. Черная металлургия</td>
<td>910665</td>
<td>752</td>
<td>911417</td>
</tr>
<tr>
<td>9. Цветная металлургия</td>
<td>926487</td>
<td>0</td>
<td>926487</td>
</tr>
<tr>
<td>10. Химия и нефтехимия</td>
<td>569054</td>
<td>193286</td>
<td>762339</td>
</tr>
<tr>
<td>11. Металлообработка</td>
<td>619753</td>
<td>378812</td>
<td>998565</td>
</tr>
</tbody>
</table>
12. Лесная, деревообрабатывающая и целлюлозно-бумажная промышленность | 413979 | 126089 | 540067
13. Промышленность строительных материалов | 367843 | 36392 | 404236
14. Легкая промышленность | 40655 | 192700 | 233355
15. Пищевая промышленность | 670234 | 1709533| 2379767
16. Прочие отрасли промышленности | 227923 | 47526 | 275449
17. Нефондосоздающая отрасль строительства | 331524 | 0 | 331524
18. Сельское и лесное хозяйство | 742825 | 634747 | 1377572
19. Транспорт и связь | 895206 | 620504 | 1515710
20. Торговля | 759942 | 183074 | 943016
21. Прочие материальные услуги | 174836 | 43226 | 218062
22. Нематериальные услуги | 1070170 | 3132372| 4202542
Всего | 16 005 809 | 7 655 898 | 23 661 707

*Построено на основе таблиц 5.3 и 5.4.

5.2.4. Определение коэффициентов материалоемкости произведенного продукта в межотраслевом разрезе за 2003 год

Согласно методологии ДММ, коэффициенты материалоемкости произведенного продукта за 2003 год оценивались только по потребляемой продукции нефондосоздающих отраслей (по строкам МОБ) исходя из данных о межотраслевых потоках продукции, содержащихся в системе таблиц «Затраты-выпуск» России за 2003 год, и полученных оценках произведенного валового продукта по отраслям национальной экономики (табл. 5.5), по следующей формуле:

\[a_{ij}(t) = \frac{x_{ij}}{x_j} \]

где \(x_{ij} \) - поток продукции из отрасли \(i \) в отрасль \(j \), \(i = 3, \ldots, 16, 19, \ldots, 23; j = 1, \ldots, 23. \)

Полученные коэффициенты материалоемкости произведенного продукта отраслей национальной экономики приведены в Приложении А.

В строках по фондосоздающим отраслям в матрице материалоемкости стоят нулевые элементы, так как эти отрасли не производят сырье, материалы и услуги, относимые к промежуточному потреблению, а производят только средства труда.
5.2.5. Формирование основных показателей процесса воспроизводства основных фондов. Расчет валовой продукции фондосоздающих отраслей.

Величины основных фондов по отраслям экономики на начало 2003 года даны в статистическом справочнике [38, с. 339]. Величина основных фондов промышленности (7200031 млн руб.) была разнесена по отраслям промышленности по отраслевой структуре основных фондов крупных и средних коммерческих организаций [38, с. 391]. Аналогичным образом были получены объемы вводов в действие основных фондов в разрезе отраслей используемой номенклатуры ([18], вводы по отраслям экономики – с. 226, вводы по отраслям промышленности в крупных и средних коммерческих организациях – с. 227). Начиная с 2001 года ФСГС учитывает инвестиции в основной капитал без налога на добавленную стоимость. Поэтому общая сумма народнохозяйственных и отраслевых инвестиций была скорректирована на действовавшую в 2003 году 20-%ную ставку данного налога (если в целом в экономике инвестиции в 2003 году составили 2186365 млн руб., - см. [38], с. 661, то с учетом НДС – 2623638 млн руб.).

Данная величина была разнесена по отраслям согласно отраслевой структуре инвестиций в основной капитал, полученной из Российского статистического ежегодника (см. [38], с. 661). Объемы прироста незавершенного строительства в экономике России в целом и в отраслевом разрезе были получены как разница величин инвестиций и вводов в действие основных фондов. В целом по народному хозяйству величина прироста незавершенного строительства составила 807980 млн руб. (2623638 млн руб. (инвестиции) – 1815658 млн руб. (вводы) = 807980 млн руб. (прирост незавершенного строительства)).

В Российском статистическом ежегоднике приводятся коэффициенты выбытия основных фондов по отраслям экономики и по отраслям промышленности [38, с. 341, 392]. Используя данные показатели, путем их умножения на величины основных фондов на начало 2003 г. были получены объемы возмещения выбытия основных фондов в разрезе отраслей промышленности и народного хозяйства. Общая величина выбытия основных фондов в экономике составила 333620 млн руб. Вычитанием данного показателя из величины вводов в действие основных фондов был получен объем прироста основных фондов в 2003 году, равный 1482038 млн руб. Суммированием величин основных фондов на начало 2003 года и объемов прироста основных фондов за год были получены величины основных фондов на конец 2003 года в целом в народном хозяйстве (31811144 млн руб.) и в отраслевом разрезе в ценах начала 2003 года. Данные показатели существенно отличаются от предлагаемых в Российском статистическом ежегоднике [38]. В соответствии с данными ФСГСа, фонды на начало 2004 года составили в целом в экономике 32501833 млн руб. [33, с. 339]. Следовательно, отличие полученной нами оценки и данных ФСГС составило 690689 млн руб.
Необходимо отметить, что в настоящее время ФСГС представляет информацию по основным фондам в смешанных ценах. Иначе говоря, в каждом году к величине основных фондов на начало года прибавляется их величина, введенная в действие в данном году, исчисленная в текущих ценах, за минусом выбытия. Перепроизводство фондов не проводилась с 1998 года. Лишь 2003 г. проводилась переоценка основных фондов в бюджетных учреждениях.

Методика представления показателей основных фондов и капитального строительства в информационной базе системы КАМИН не позволяет использовать прирост основных фондов в 2003 году, полученный по информации справочника [38]. В этом случае величина прироста основных фондов равна 2172727 млн руб. (32501833 млн руб. (основные фонды на начало 2004 г.) - 30329106 млн руб. (основные фонды на начало 2003 г.) = 2172727 млн руб.) будет превышать объем ввода в действие основных фондов в 2003 году (1815658 млн руб.). Иначе говоря, показатели процесса воспроизводства основных фондов будут не сбалансированы.

Именно поэтому при формировании информационной базы динамической межотраслевой модели экономики России была использована оценка величины основных фондов на конец 2003 г., полученная по вышеописанной методике.

В таблице 5.6 представлены основные показатели воспроизводства основных фондов в 2003 году в экономике России в целом и отраслях промышленности и народного хозяйства.

| Таблица 5.6. Основные показатели воспроизводства основных фондов в 2003 году, млрд. руб., текущие цены |
|----------------------------------|------------------|------------------|---------------------|---------------------|---------------------|---------------------|
| Отрасли | Основные фонды, на начало года | Основные фонды, на конец года | Прирост основных фондов | Возмещение выбытия основных фондов | Ввод в действие основных фондов | Инвестиции в основной капитал | Прирост незавершенного строительства |
| Электро и теплоэнергетика | 2443.8 | 2499.8 | 55.9 | 14.1 | 70.0 | 116.4 | 46.6 |
| Нефтедобыча | 1462.7 | 1633.5 | 170.7 | 23.6 | 194.3 | 254.2 | 59.8 |
| Нефтепереработка | 155.9 | 181.1 | 25.2 | 2.0 | 27.1 | 35.6 | 8.5 |
| Газовая промышленность | 68.4 | 82.6 | 14.2 | 0.3 | 14.5 | 112.9 | 98.4 |
| Прочие отрасли топливной промышленности | 119.6 | 127.2 | 7.6 | 3.3 | 10.8 | 17.0 | 6.2 |
| Черная металлургия | 342.8 | 366.2 | 23.3 | 4.3 | 27.7 | 43.5 | 15.8 |
| Цветная металлургия | 441.7 | 496.8 | 55.1 | 6.1 | 61.2 | 66.7 | 5.5 |
| Химическая и нефтехимическая промышленность | 338.9 | 360.3 | 21.4 | 5.5 | 26.9 | 43.5 | 16.6 |
| Машиностроение и металлорежущая индустрия | 999.9 | 1047.7 | 47.8 | 16.1 | 63.9 | 82.2 | 18.3 |
| Лесная, деревообрабатывающая и целлюлозно-бумажная промышленность | 157.7 | 179.1 | 21.4 | 3.4 | 24.9 | 38.9 | 14.0 |
| Промышленность строительных материалов | 118.6 | 128.8 | 10.2 | 3.0 | 13.2 | 17.3 | 4.0 |
| Легкая промышленность | 52.3 | 55.0 | 2.7 | 1.3 | 4.0 | 5.0 | 1.0 |
| Пищевая промышленность | 364.4 | 435.5 | 71.2 | 8.8 | 80.0 | 95.1 | 15.1 |
| Прочие отрасли промышленности | 133.1 | 148.4 | 15.4 | 2.0 | 17.4 | 26.9 | 9.5 |
Следующий этап построения информационной базы предполагал разбиение представленных в таблице показателей на активную и пассивную части и формирование показателей валовой продукции фондосоздающих отраслей машиностроения и строительство. В соответствии с понятием видовой структуры к активной части основных фондов относятся машины, оборудование, транспортные средства, производственный и хозяйственный инвентарь; к пассивной части – здания, сооружения и прочие виды основных фондов. Федеральной службой государственной статистики была предоставлена информация о наличии отдельных видов основных фондов (машин, оборудования, транспортных средств, производственного и хозяйственного инвентаря) на начало 2005 года по видам экономической деятельности, которая была использована для расчета технологической структуры основных фондов в отраслях промышленности и народного хозяйства путем соотнесения представленных видов экономической деятельности к соответствующим отраслям. Принятая гипотеза о стабильности данной структуры в 2003-2005 годах позволяет разделить основные фонды и их прирост в 2003 году на активную и пассивную части (см. таблицу 5.7).

Таблица 5.7. Активная (А) и пассивная (П) части основных фондов, млрд. руб., смешанные цены

<table>
<thead>
<tr>
<th>Отрасли</th>
<th>Основные фонды, на начало 2003 года</th>
<th>Основные фонды, на конец 2003 года</th>
<th>Прирост основных фондов</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>А</td>
<td>П</td>
<td>А</td>
</tr>
<tr>
<td>Электро и теплоэнергетика</td>
<td>956.7</td>
<td>1487.1</td>
<td>973.3</td>
</tr>
<tr>
<td>Нефтедобыча</td>
<td>394.3</td>
<td>1068.4</td>
<td>445.0</td>
</tr>
<tr>
<td>Нефтепереработка</td>
<td>88.0</td>
<td>68.0</td>
<td>99.6</td>
</tr>
<tr>
<td>Газовая промышленность</td>
<td>26.3</td>
<td>42.2</td>
<td>31.0</td>
</tr>
<tr>
<td>Прочие отрасли гопшливой промышленности</td>
<td>76.8</td>
<td>42.9</td>
<td>81.1</td>
</tr>
<tr>
<td>Черная металлургия</td>
<td>204.6</td>
<td>138.3</td>
<td>221.4</td>
</tr>
</tbody>
</table>
ФСГС предоставил также информацию о доле зданий, сооружений, машин, оборудования, транспортных средств в составе ввода в действие и ликвидации основных фондов по видам экономической деятельности за 2005 год. С ее использованием была рассчитана активная и пассивная части ввода в действие основных фондов и, соответственно, объемы возмещения выбытия машин и оборудования, зданий и сооружений в отраслях народного хозяйства в 2003 году (таблица 5.8).
Таблица 5.8. Активная (А) и пассивная (П) части объемов возмещения выбытия и ввода в действие основных фондов в 2003 году, млрд. руб., текущие цены

<table>
<thead>
<tr>
<th>Отрасли</th>
<th>Возмещение выбытия основных фондов А</th>
<th>П</th>
<th>Ввод в действие основных фондов А</th>
<th>П</th>
</tr>
</thead>
<tbody>
<tr>
<td>Электро и тепло энергетика</td>
<td>6.7</td>
<td>7.4</td>
<td>23.3</td>
<td>46.7</td>
</tr>
<tr>
<td>Нефтедобыча</td>
<td>15.3</td>
<td>8.3</td>
<td>65.9</td>
<td>128.4</td>
</tr>
<tr>
<td>Нефтепереработка</td>
<td>1.3</td>
<td>0.7</td>
<td>12.9</td>
<td>14.3</td>
</tr>
<tr>
<td>Газовая промышленность</td>
<td>0.2</td>
<td>0.1</td>
<td>4.9</td>
<td>9.6</td>
</tr>
<tr>
<td>Прочие отрасли топливной промышленности</td>
<td>2.3</td>
<td>1.0</td>
<td>6.6</td>
<td>4.2</td>
</tr>
<tr>
<td>Черная металлургия</td>
<td>3.3</td>
<td>1.0</td>
<td>20.1</td>
<td>7.6</td>
</tr>
<tr>
<td>Цветная металлургия</td>
<td>4.6</td>
<td>1.5</td>
<td>44.5</td>
<td>16.7</td>
</tr>
<tr>
<td>Химическая и нефтехимическая промышленность</td>
<td>4.2</td>
<td>1.3</td>
<td>19.3</td>
<td>7.6</td>
</tr>
<tr>
<td>Машиностроение и металлообработка</td>
<td>12.1</td>
<td>4.0</td>
<td>42.5</td>
<td>21.4</td>
</tr>
<tr>
<td>Лесная, деревообрабатывающая и целлюлозно-бумажная промышленность</td>
<td>2.6</td>
<td>0.8</td>
<td>17.5</td>
<td>7.4</td>
</tr>
<tr>
<td>Промышленность строительных материалов</td>
<td>2.2</td>
<td>0.8</td>
<td>8.4</td>
<td>4.8</td>
</tr>
<tr>
<td>Легкая промышленность</td>
<td>0.9</td>
<td>0.4</td>
<td>2.8</td>
<td>1.2</td>
</tr>
<tr>
<td>Пищевая промышленность</td>
<td>6.7</td>
<td>2.1</td>
<td>56.6</td>
<td>23.4</td>
</tr>
<tr>
<td>Прочие отрасли промышленности</td>
<td>1.6</td>
<td>0.4</td>
<td>12.8</td>
<td>4.6</td>
</tr>
<tr>
<td>Строительство</td>
<td>8.8</td>
<td>4.6</td>
<td>38.8</td>
<td>16.6</td>
</tr>
<tr>
<td>Сельское и лесное хозяйство</td>
<td>15.0</td>
<td>26.2</td>
<td>26.1</td>
<td>20.0</td>
</tr>
<tr>
<td>Транспорт и связь</td>
<td>36.2</td>
<td>18.5</td>
<td>219.3</td>
<td>153.4</td>
</tr>
<tr>
<td>Торгово-посреднические услуги (включая услуги общественного питания)</td>
<td>3.0</td>
<td>16.6</td>
<td>10.2</td>
<td>119.6</td>
</tr>
<tr>
<td>Прочие виды деятельности</td>
<td>0.8</td>
<td>0.4</td>
<td>2.0</td>
<td>5.4</td>
</tr>
<tr>
<td>Производство нематериальных услуг</td>
<td>52.3</td>
<td>57.6</td>
<td>263.0</td>
<td>305.6</td>
</tr>
<tr>
<td>Народное хозяйство, всего</td>
<td>180.0</td>
<td>153.6</td>
<td>897.3</td>
<td>918.3</td>
</tr>
</tbody>
</table>

Использованный валовой выпуск отрасли «Строительство» (1901412 млн руб., [41]), за вычетом инвестиций в жилье (37806 млн руб. – конечное потребление строительной продукции домашними хозяйствами), и промежуточного продукта отрасли нефондосоздающего строительства (331524 млн руб., [41]) формирует материально-вещественное наполнение пассивной части инвестиций в основной капитал – 1532082 млн руб.. Это будет продукт фондосоздающей отрасли «Строительство» (инвестиции в здания и сооружения). Вычитая из общего объема инвестиций инвестиции на воспроизводство пассивной части основных фондов, включая инвестиции в жилье, получаем объем инвестиций в активную часть основных фондов – 1053750 млн руб. (2623638 млн руб. - 1569888 млн руб. = 1053750 млн руб.). Это будет объем
продукции фондосознающей отрасли «Машиностроение» (инвестиции в машины и оборудование). Объем использованного продукта отрасли «Металлообработка» был получен следующим образом: 2597391 млн руб. (валовой использованный продукт отрасли «Машиностроение» [41]) – 1053750 млн. руб. (продукт фондосознающей отрасли «Машиностроение») = 1543641 млн руб.. Данная величина была разделена на продукцию I и II подразделения согласно структуре промежуточного и конечного использования продукта отрасли «Машиностроение», взятой из [41]. Баланс продукции машиностроения и строительства представлен в таблице 5.9_11.

Для деления отраслевых объемов инвестиций в основной капитал на активную и пассивную части была использована технологическая структура вводов в действие основных фондов в отраслях экономики и промышленности. Зная рассчитанные ранее отраслевые объемы ввода в действие машин и оборудования, зданий и сооружений, можно определить величины прироста незавершенного строительства зданий и сооружений и незавершенного производства машин и оборудования в отраслях промышленности и народного хозяйства. Результаты представлены в таблице 5.10.

Таблица 5.9. Баланс продукции отраслей «Строительство» и «Машиностроение» в 2003 году, млрд. руб., текущие цены

<table>
<thead>
<tr>
<th></th>
<th>I подразделение</th>
<th>II подразделение</th>
<th>Всего</th>
</tr>
</thead>
<tbody>
<tr>
<td>Строительство зданий и сооружений</td>
<td>1532.1</td>
<td>37.8</td>
<td>1569.9</td>
</tr>
<tr>
<td>Нефондосознающее строительство</td>
<td>331.5</td>
<td>0</td>
<td>331.5</td>
</tr>
<tr>
<td>Строительство, всего</td>
<td>1863.6</td>
<td>37.8</td>
<td>1901.4</td>
</tr>
<tr>
<td>Производство машин и оборудования</td>
<td>1053.8</td>
<td>0</td>
<td>1053.8</td>
</tr>
<tr>
<td>Металлообработка</td>
<td>958.1</td>
<td>585.6</td>
<td>1543.7</td>
</tr>
<tr>
<td>Машиностроение, всего</td>
<td>2011.9</td>
<td>585.6</td>
<td>2597.5</td>
</tr>
</tbody>
</table>

Таблица 5.10. Технологическая структура инвестиций в основной капитал и прироста незавершенного производства в 2003 году, млрд. руб., текущие цены

<table>
<thead>
<tr>
<th>Отрасли</th>
<th>Инвестиции в основной капитал А</th>
<th>П</th>
<th>Прирост незавершенного строительства А</th>
<th>П</th>
</tr>
</thead>
<tbody>
<tr>
<td>Электро и тепло энергетика</td>
<td>27.3</td>
<td>89.2</td>
<td>4.1</td>
<td>42.5</td>
</tr>
<tr>
<td>Нефтедобыча</td>
<td>77.4</td>
<td>176.8</td>
<td>11.5</td>
<td>48.4</td>
</tr>
<tr>
<td>Нефтепереработка</td>
<td>15.1</td>
<td>20.5</td>
<td>2.2</td>
<td>6.2</td>
</tr>
<tr>
<td>Газовая промышленность</td>
<td>5.8</td>
<td>107.1</td>
<td>0.9</td>
<td>97.5</td>
</tr>
<tr>
<td>Прочие отрасли топливной промышленности</td>
<td>7.8</td>
<td>9.2</td>
<td>1.2</td>
<td>5.0</td>
</tr>
</tbody>
</table>
Черная металлургия 23.6 19.8 3.5 12.3
Цветная металлургия 52.2 14.5 7.8 -2.3
Химическая и нефтехимическая промышленность 22.7 20.9 3.4 13.3
Машиностроение и металлообработка 49.9 32.3 7.4 10.9
Лесная, деревообрабатывающая и целлюлозно-бумажная промышленность 20.5 18.4 3.0 11.0
Промышленность строительных материалов 9.9 7.4 1.5 2.6
Легкая промышленность 3.3 1.8 0.5 0.5
Пищевая промышленность 66.4 28.7 9.9 5.3
Прочие отрасли промышленности 15.1 11.8 2.2 7.3
Производство строительных работ 45.5 66.6 6.8 50.0
Сельское и лесное хозяйство 30.7 74.3 4.6 54.4
Транспорт и связь 257.5 352.2 38.2 198.8
Торгово-посреднические услуги (включая услуги общественного питания) 11.9 98.1 1.8 -21.5
Прочие виды деятельности 2.4 2.4 0.4 -3.0
Производство нематериальных услуг 308.8 418.2 45.9 112.6
Народное хозяйство, всего 1053.8 1569.9 156.4 651.6

Темпы роста производства в остальных отраслях экономики были оценены экспертом. За основу оценки темпов роста валового выпуска отрасли «Транспорт и связь» были взяты данные о темпах роста грузооборота транспорта. За основу оценки темпов роста валового выпуска отрасли «Торгово-посреднические услуги» были взяты данные о темпах роста оборота розничной торговли. Темп роста валового выпуска отрасли «Производство нематериальных услуг» был первоначально оценен на основе данных о темпах роста объема платных услуг населению. Далее по всем вышеперечисленным отраслям темпы роста объемов производства уточнялись в ходе имитационных расчетов на период 2004-2007 гг. с использованием ДММ.
Таблица 5.11. Темпы роста валового выпуска в отраслях экономики России в 2004 – 2007 гг., %.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Электро и тепло энергетика</td>
<td>100,3</td>
<td>100,7</td>
<td>100,6</td>
<td>100,5</td>
<td>103,1</td>
</tr>
<tr>
<td>Нефтедобыча</td>
<td>110,5</td>
<td>103,9</td>
<td>103,7</td>
<td>103,6</td>
<td>123,5</td>
</tr>
<tr>
<td>Нефтепереработка</td>
<td>102,5</td>
<td>102,0</td>
<td>102,3</td>
<td>102,5</td>
<td>109,6</td>
</tr>
<tr>
<td>Газовая промышленность</td>
<td>102,0</td>
<td>101,8</td>
<td>101,8</td>
<td>101,8</td>
<td>107,6</td>
</tr>
<tr>
<td>Прочие отрасли топливной промышленности</td>
<td>106,3</td>
<td>105,5</td>
<td>105,5</td>
<td>105,5</td>
<td>124,9</td>
</tr>
<tr>
<td>Черная металлургия</td>
<td>103,9</td>
<td>103,0</td>
<td>104,1</td>
<td>104,7</td>
<td>116,6</td>
</tr>
<tr>
<td>Цветная металлургия</td>
<td>102,3</td>
<td>102,9</td>
<td>103,2</td>
<td>103,4</td>
<td>112,3</td>
</tr>
<tr>
<td>Химическая и нефтехимическая промышленность</td>
<td>105,2</td>
<td>104,8</td>
<td>104,8</td>
<td>105,0</td>
<td>121,3</td>
</tr>
<tr>
<td>Машиностроение и металлообработка</td>
<td>113,2</td>
<td>111,8</td>
<td>113,3</td>
<td>114,2</td>
<td>163,7</td>
</tr>
<tr>
<td>Лесная, деревообрабатывающая и целлюлозно-бумажная пром-ть</td>
<td>105,1</td>
<td>104,8</td>
<td>105,2</td>
<td>105,6</td>
<td>122,4</td>
</tr>
<tr>
<td>Промышленность строительных материалов</td>
<td>108,2</td>
<td>106,2</td>
<td>108,3</td>
<td>108,9</td>
<td>110,6</td>
</tr>
<tr>
<td>Легкая промышленность</td>
<td>98,0</td>
<td>104,0</td>
<td>102,4</td>
<td>104,1</td>
<td>109,1</td>
</tr>
<tr>
<td>Пищевая промышленность</td>
<td>105,5</td>
<td>105,3</td>
<td>104,3</td>
<td>103,8</td>
<td>120,3</td>
</tr>
<tr>
<td>Прочие отрасли промышленности</td>
<td>103,7</td>
<td>103,8</td>
<td>103,6</td>
<td>103,7</td>
<td>115,8</td>
</tr>
<tr>
<td>Промышленность - всего</td>
<td>105,9</td>
<td>104,8</td>
<td>105,1</td>
<td>105,5</td>
<td>123,1</td>
</tr>
<tr>
<td>Строительство</td>
<td>111,5</td>
<td>109,1</td>
<td>112,1</td>
<td>113,0</td>
<td>154,2</td>
</tr>
<tr>
<td>Сельское и лесное хозяйство</td>
<td>103,8</td>
<td>103,7</td>
<td>102,9</td>
<td>102,6</td>
<td>113,7</td>
</tr>
<tr>
<td>Транспорт и связь</td>
<td>103,8</td>
<td>103,8</td>
<td>103,8</td>
<td>104,2</td>
<td>116,5</td>
</tr>
<tr>
<td>Торгово-посреднические услуги (включая услуги общественного питания)</td>
<td>109,3</td>
<td>110,4</td>
<td>111,8</td>
<td>113,3</td>
<td>152,9</td>
</tr>
<tr>
<td>Прочие виды деятельности</td>
<td>106,2</td>
<td>106,1</td>
<td>106,4</td>
<td>106,9</td>
<td>128,1</td>
</tr>
<tr>
<td>Производство нематериальных услуг</td>
<td>109,1</td>
<td>108,9</td>
<td>108,2</td>
<td>107,9</td>
<td>138,6</td>
</tr>
<tr>
<td>Валовой выпуск – всего</td>
<td>106,8</td>
<td>106,0</td>
<td>106,4</td>
<td>106,7</td>
<td>128,5</td>
</tr>
<tr>
<td>Валовой выпуск II подразделения</td>
<td>109,1</td>
<td>109,2</td>
<td>108,4</td>
<td>108,2</td>
<td>139,7</td>
</tr>
</tbody>
</table>

Расчет объемов производства в фондосоздающих отраслях машиностроения и строительства в 2007 г. осуществлялся на основе данных о валовом выпуске этих отраслей в 2003 г. и о темпах роста инвестиций в основной капитал и вводов в действие основных фондов в 2004 – 2007 гг. (см. таблицу 5.12).

Таблица 5.12. Динамика инвестиций в основной капитал и ввода в действие основных фондов в экономике России в 2004 – 2007 гг., %.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Инвестиции в основной капитал</td>
<td>111,1</td>
<td>110,7</td>
<td>113,9</td>
<td>115,2</td>
<td>161,3</td>
</tr>
<tr>
<td>Ввод в действие основных фондов</td>
<td>107,0</td>
<td>109,2</td>
<td>111,0</td>
<td>115,0</td>
<td>149,2</td>
</tr>
</tbody>
</table>
Используемая в расчетах ДММ учитывает строительный лаг. Поэтому в ее информационной базе необходимо задавать темпы роста ввода в действие основных фондов в запланированном периоде. Применительно к имитационным расчетам по ДММ на период 2004 – 2007 гг. прогнозные значения вводов в действие основных фондов задаются на период 2008 -2017 гг. Длительность периода, на который задаются прогнозные значения общего объема ввода в действие основных фондов, определяется параметром максимального значения строительного лага, заданным в программном комплексе КАМИН. В данном случае этот параметр был равен 10 годам. При этом было реализовано предположение о том, что темп роста ввода в действие основных фондов в запланированном периоде в 2008 г. составит 17% и в последующие годы – в среднем по 20 %. Этот темп соответствует ожидаемой высокой инвестиционной активности в 2008-2017 гг.

В результате, была получена оценка всех элементов информационной базы ДММ для 2007 г. Валовой выпуск отраслей номенклатуры модели с разбиением на продукцию первого и второго подразделений приведен в таблице 5.13. В данной таблице в ряде отраслей в третьем столбце значение валового выпуска второго подразделения равно нулю. Для этих отраслей была принята гипотеза о том, что в них не производится продукция, обеспечивающая удовлетворение потребностей населения.

<table>
<thead>
<tr>
<th>Цифра</th>
<th>Название отрасли</th>
<th>Валовой выпуск Всего</th>
<th>Валовой выпуск I подразделения</th>
<th>Валовой выпуск II подразделения</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Производство машин и оборудования</td>
<td>1651,1</td>
<td>1651,0</td>
<td>0,0</td>
</tr>
<tr>
<td>2.</td>
<td>Строительство зданий и сооружений</td>
<td>2378,9</td>
<td>2327,9</td>
<td>51,0</td>
</tr>
<tr>
<td>3.</td>
<td>Электроэнергетика</td>
<td>974,2</td>
<td>803,3</td>
<td>170,9</td>
</tr>
<tr>
<td>4.</td>
<td>Нефтедобыча</td>
<td>2086,9</td>
<td>2086,9</td>
<td>0,0</td>
</tr>
<tr>
<td>5.</td>
<td>Нефтепереработка</td>
<td>1453,7</td>
<td>1272,6</td>
<td>181,1</td>
</tr>
<tr>
<td>6.</td>
<td>Газовая промышленность</td>
<td>1075,6</td>
<td>1005,6</td>
<td>70,0</td>
</tr>
<tr>
<td>7.</td>
<td>Прочие отрасли топливной промышленности</td>
<td>391,0</td>
<td>379,2</td>
<td>11,8</td>
</tr>
<tr>
<td>8.</td>
<td>Черная металлургия</td>
<td>1062,8</td>
<td>1061,8</td>
<td>1,0</td>
</tr>
<tr>
<td>9.</td>
<td>Цветная металлургия</td>
<td>1040,7</td>
<td>1040,7</td>
<td>0,0</td>
</tr>
<tr>
<td>10.</td>
<td>Химия, нефтехимия</td>
<td>924,9</td>
<td>667,7</td>
<td>257,2</td>
</tr>
<tr>
<td>11.</td>
<td>Металлообработка и производство комплектующих изделий</td>
<td>1419,5</td>
<td>784,6</td>
<td>634,9</td>
</tr>
<tr>
<td>12.</td>
<td>Лесная, деревообрабатывающая и целлюлозно-бумажная промышленность</td>
<td>660,9</td>
<td>482,0</td>
<td>178,9</td>
</tr>
<tr>
<td>13.</td>
<td>Промышленность строительных материалов</td>
<td>547,3</td>
<td>498,1</td>
<td>49,2</td>
</tr>
<tr>
<td>14.</td>
<td>Легкая промышленность</td>
<td>254,6</td>
<td>10,9</td>
<td>243,7</td>
</tr>
<tr>
<td>15.</td>
<td>Пищевая промышленность</td>
<td>2862,5</td>
<td>679,0</td>
<td>2183,5</td>
</tr>
<tr>
<td>16.</td>
<td>Прочие отрасли промышленности</td>
<td>318,8</td>
<td>250,8</td>
<td>68,0</td>
</tr>
<tr>
<td>17.</td>
<td>Нефondосоздающая отрасль строительства</td>
<td>430,1</td>
<td>430,1</td>
<td>0,0</td>
</tr>
<tr>
<td>18.</td>
<td>Сельское и лесное хозяйство</td>
<td>1566,0</td>
<td>785,7</td>
<td>780,3</td>
</tr>
<tr>
<td>19.</td>
<td>Транспорт и связь</td>
<td>1765,9</td>
<td>1094,6</td>
<td>671,3</td>
</tr>
<tr>
<td>20.</td>
<td>Торговля</td>
<td>1441,6</td>
<td>910,5</td>
<td>531,1</td>
</tr>
<tr>
<td>21.</td>
<td>Прочие материальные услуги</td>
<td>279,4</td>
<td>216,0</td>
<td>63,4</td>
</tr>
<tr>
<td>22.</td>
<td>Нематериальные услуги</td>
<td>5826,3</td>
<td>1275,6</td>
<td>4550,7</td>
</tr>
<tr>
<td>Валовой выпуск, всего</td>
<td>30412,8</td>
<td>19714,9</td>
<td>10697,9</td>
<td></td>
</tr>
</tbody>
</table>
Величина основных фондов отраслей номенклатуры модели на конец 2007 г. с выделением элементов видовой структуры приведена в таблице 5.14.

<table>
<thead>
<tr>
<th>Отрасли</th>
<th>Общая величина</th>
<th>в том числе</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>основных фондов</td>
<td>машины и оборудование</td>
</tr>
<tr>
<td>1.Производство машин и оборудования</td>
<td>1348,5</td>
<td>543,9</td>
</tr>
<tr>
<td>2.Строительство зданий и сооружений</td>
<td>1162,9</td>
<td>555,0</td>
</tr>
<tr>
<td>3.Электроэнергетика</td>
<td>7928,7</td>
<td>3147,4</td>
</tr>
<tr>
<td>4.Нефтедобыча</td>
<td>5109,4</td>
<td>1443,8</td>
</tr>
<tr>
<td>5.Нефтепереработка</td>
<td>549,9</td>
<td>323,7</td>
</tr>
<tr>
<td>6.Газовая промышленность</td>
<td>248,5</td>
<td>104,2</td>
</tr>
<tr>
<td>7.Прочие отрасли топливной промышленности</td>
<td>405,5</td>
<td>266,0</td>
</tr>
<tr>
<td>8.Черная металлургия</td>
<td>1153,7</td>
<td>693,0</td>
</tr>
<tr>
<td>9.Цветная металлургия</td>
<td>1543,9</td>
<td>373,3</td>
</tr>
<tr>
<td>10.Химия, нефтехимия</td>
<td>1139,0</td>
<td>637,9</td>
</tr>
<tr>
<td>11.Металлообработка</td>
<td>1975,4</td>
<td>796,8</td>
</tr>
<tr>
<td>12.Лесная, деревообрабатывающая и целлюлозно-бумажная промышленность</td>
<td>557,6</td>
<td>358,1</td>
</tr>
<tr>
<td>13. Промышленность строительных материалов</td>
<td>407,4</td>
<td>222,7</td>
</tr>
<tr>
<td>14. Легкая промышленность</td>
<td>175,5</td>
<td>84,2</td>
</tr>
<tr>
<td>15. Пищевая промышленность</td>
<td>1333,7</td>
<td>950,5</td>
</tr>
<tr>
<td>16. Прочие отрасли промышленности</td>
<td>462,1</td>
<td>198,1</td>
</tr>
<tr>
<td>17. Нефондосоздающая отрасль строительства</td>
<td>245,6</td>
<td>117,2</td>
</tr>
<tr>
<td>18. Сельское и лесное хозяйство</td>
<td>4324,6</td>
<td>1548,5</td>
</tr>
<tr>
<td>19. Транспорт и связь</td>
<td>30253,4</td>
<td>12670,1</td>
</tr>
<tr>
<td>20. Торговля</td>
<td>1903,7</td>
<td>204,8</td>
</tr>
<tr>
<td>21. Прочие материальные услуги</td>
<td>189,1</td>
<td>53,9</td>
</tr>
<tr>
<td>22. Нематериальные услуги</td>
<td>38209,5</td>
<td>12185,6</td>
</tr>
<tr>
<td>Основные фонды, всего</td>
<td>100627,6</td>
<td>37478,7</td>
</tr>
</tbody>
</table>

В приложениях Б и В приведены матрицы оценки величин материоемкости и фондаемости произведенного валового выпуска отраслей номенклатуры ДММ в информационной базе 2007 г. В Приложении Б показана квадратная матрица коэффициентов материоемкости. В действительности в ДММ это – прямоугольная матрица, так как число
отраслей первого подразделения равно 22, а общее количество отраслей (с учетом отраслей второго подразделения) составляет 40. Однако для каждой подотрасли первого и второго подразделений принималась гипотеза о том, что материалоемкость одинакова. Поэтому в Приложении Б показаны коэффициенты материалоемкости только для первого подразделения.

Относительно коэффициентов фондоемкости также было реализовано предположение об их равенстве для подотраслей первого и второго подразделений каждой отрасли номенклатуры ДММ. Поэтому в Приложении В приводятся значения этих параметров ДММ только для 22 отраслей.

Расчет коэффициентов структуры распределенного лага $\mu(t, \tau)$ проводился на основе отраслевых данных о динамике ввода в действие основных фондов, инвестиций в основной капитал и незавершенного строительства в 1992 – 2006 гг. с использованием задачи квадратичного программирования, описанной в работе [47].

Общая величина среднегодовой численности занятых в экономике России в 2007 г. была оценена на уровне 69000 тыс. чел. Численность занятых в отраслях национальной экономики России определялась на основе данных федеральной службы статистики России [38].

Дифференциация трудовых ресурсов между подотраслями машиностроения (производство машин и оборудования, металлообработка и производство комплектующих изделий) и строительства (строительство зданий и сооружений, нефондосоздающая отрасль строительства) проводилась пропорционально величине валового выпуска соответствующих подотраслей. Следовательно, для каждой из этих отраслей предполагалось, что трудоемкость во входящих в них подотраслях равна трудоемкости по отрасли в целом.

Дифференциация трудовых ресурсов между подотраслями первого и второго подразделений каждой отрасли номенклатуры модели также проводилась пропорционально величине валового выпуска. Иначе говоря, для каждой отрасли было реализовано предположение об одинаковой трудоемкости производства в подотраслях обоих подразделений.
6. Алгоритмы и программное обеспечение расчетов по динамическим межотраслевым моделям с использованием нечетко-множественных методов

Для выполнения расчетов в данной работе нами принято треугольное представление параметров и нормативов межотраслевой модели (3.3)-(3.4), (3.5)-(3.12). Треугольным числом A называется нечеткое множество со следующей функцией принадлежности

![График функции принадлежности $\chi_A(x)$ нечеткого треугольного числа A.](image)

Алгоритм расчетов по модели (3.3)-(3.4), (3.5)-(3.12) основан на правилах выполнения основных арифметических операций над нечеткими числами. Правила сложения, вычитания, умножения и деления нечетких чисел описаны в подразделе 6.1.

6.1. Нечеткая арифметика

Базовой процедурой нечеткой арифметики является следующая процедура нечеткого продолжения обычных точечно-точечных отображений.

Пусть $f : X \rightarrow Y$ - некоторое точечно-точечное отображение множества X в множество Y. Определим отображение $\tilde{f} : \mathcal{Z}(X) \rightarrow \mathcal{Z}(Y)$ следующим образом. Возьмем некоторое $A \in \mathcal{Z}(X)$, χ_A - ее функция принадлежности.
функция принадлежности. Функцию \(\chi_B \) принадлежности множества \(B = f(A) \in \mathcal{Y} \) определим по формуле

\[
\chi_B(y) = \sup_{x \in f^{-1}(y)} \chi_A(x),
\]

где \(f^{-1}(y) = \{x \in X | f(x) = y\} \).

Определенное таким образом отображение \(\tilde{f} : \mathcal{X} \to \mathcal{Y} \), будем называть нечетким отображением, порожденным точечно-точечной функцией \(f : X \to Y \). Отображение \(\tilde{f} \) иногда называется нечетким продолжением функции \(f : X \to Y \).

Обобщение данной методики нечеткого продолжения на функции многих переменных выполняется по методу математической индукции. Пусть \(f : \prod_{i=1}^{n} X_i \to Y, A_i \in \mathcal{X}(X_i), \chi_i - \) их функции принадлежности. Функция принадлежности \(\chi_B \) множества \(B = f(A_1, A_2, ..., A_n) \in \mathcal{Y} \) определяется по формуле

\[
\chi_B(y) = \sup_{x \in f^{-1}(y) \cup \mathcal{X}} \min_{1 \leq i \leq n} \chi_i(x_i),
\]

где \(f^{-1}(y) = \{x = (x_1, x_2, ..., x_n) \in \prod_{i=1}^{n} X_i | f(x) = y\} \).

Сложение нечетких чисел

Пусть в \(X \) определена операция сложения и \(A, B \in \mathcal{X}(X) \). Тогда функция принадлежности суммы нечетких множеств \(A + B \) вычисляется по формуле

\[
\chi_{A+B}(x) = \sup_{y+z=x} \min_{1 \leq i \leq n} \{\chi_A(y), \chi_B(z)\},
\]

Вычитание нечетких чисел

Пусть в \(X \) определена операция вычитания и \(A, B \in \mathcal{X}(X) \). Тогда функция принадлежности разности нечетких множеств \(A - B \) вычисляется по формуле

\[
\chi_{A-B}(x) = \sup_{y-z=x} \min_{1 \leq i \leq n} \{\chi_A(y), \chi_B(z)\}.
\]

Умножение нечетких чисел

Пусть в \(X \) определена операция умножения и \(A, B \in \mathcal{X}(X) \). Тогда функция принадлежности произведения нечетких множеств \(A \cdot B \) вычисляется по формуле

109
Деление нечетких чисел

Пусть в X определена операция деления и $A, B \in \mathcal{F}(X)$. Тогда функция принадлежности частного от деления нечетких множеств $A \div B$ вычисляется по формуле

$$
\chi_{A \div B}(x) = \sup_{y, z \in x} \min\{\chi_{A}(y), \chi_{B}(z)\}.
$$

(6.5)

6.2. Алгоритм расчетов по модели с нечеткими параметрами

Алгоритм расчетов по модели (3.3)-(3.4), (3.5)-(3.12) заключается в решении задачи нечеткой оптимизации (3.13). Идентификация задачи (3.13) заключается в вычислении функций принадлежности χ_Ω нечеткого множества допустимых траекторий и функции принадлежности χ_f нечеткой цели. Для вычисления функции принадлежности нечеткого множества допустимых траекторий и функции принадлежности нечеткой цели задачи (3.13) используются формулы (3.3)-(3.4), (3.5)-(3.12), (6.3)-(6.6).

Для построения функции принадлежности оптимального решения задачи (3.13) применяется метод сечений, описанный в разделе 4 данной книги. По заданному числу $\alpha : 0 < \alpha \leq 1$ строится выпуклое множество траекторий $\Omega_\alpha = \{x \in R^n | \chi_\Omega(x) \geq \alpha\}$ и многогранное множество целей $f_\alpha = \{h | \chi_f(h) \geq \alpha\}$. Обозначим через Z_α множество оптимальных решений задачи многоцелевой оптимизации

$$
f_\alpha \rightarrow \max, \quad x \in \Omega_\alpha.
$$

(6.7)

Для решения задачи (6.7) в систему КАМИН включены процедуры параметризации Паретовой границы на основе суммирования целей с весовыми коэффициентами. Обозначим через $h(x)$ результирующую цель в задаче (6.7) при заданных весовых коэффициентах c_k. Обозначим через Z_ε оптимальное решение задачи

$$
h(x) \rightarrow \max, \quad x \in \Phi,
$$

(6.8)

где обозначено $\Phi = \Omega_\alpha$. Тогда, очевидно, Z_α представляет собой объединение всех Z_ε при всевозможных изменениях весовых коэффициентов.
Опишем далее методы решения задачи (6.8). Для решения задачи (6.8) используются итеративные методы градиентного типа. В этих методах в качестве промежуточного этапа на каждой итерации вычисляется градиент максимизируемого функционала в точке \(x_{n-1} \), найденной на предыдущей итерации. Затем через решение вспомогательной задачи находится точка \(x_n \). Различные методы классифицируются по характеру вспомогательных задач. Можно выделить вспомогательные задачи проекционного и оптимизационного типа.

Кратко опишем схему метода условного градиента. Если известна точка \(x_{n-1} \in \Phi \), то на \(n \)-й итерации решается задача максимизации

\[
\langle \nabla h(x_{n-1}), x \rangle \rightarrow \max x \in \Phi ,
\]

где \(\nabla h(x) \) - градиент функционала \(h \) в точке \(x \). Обозначим через \(\bar{x}_n \) решение задачи (6.9). Тогда \(n \)-е приближение по методу условного градиента находится из условия

\[
h(x_n) = \max_{x \in I_n} h(x),
\]

где \(I_n = \{x \in [x_{n-1}, \bar{x}_n]\} \). Справедлива следующая теорема, доказательство которой содержится в работе [36] и здесь не воспроизводится.

Теорема 6.1. Если \(\Phi \) - ограниченное, замкнутое, выпуклое множество, \(h \) - вогнутый, непрерывно дифференцируемый функционал и \(\max_{x \in \Phi} h(x) = q \), то \(\lim_{n \to \infty} h(x_n) = q \) и всякая точка сгущения последовательности \(x_n \) является решением задачи (6.8). Здесь \(x_n \) - последовательность точек, построенная по методу условного градиента.

Схема метода условного градиента удобна тем, что справедлива следующая оценка близости к решению на \(n \)-й итерации

\[
0 \leq q - h(x_n) \leq \langle \nabla h(x_n), \bar{x}_{n+1} - x_n \rangle = g_n ,
\]

которая непосредственно вытекает из вогнутости \(h \) и выпуклости \(\Phi \).

Если градиент функционала \(h \) удовлетворяет на \(\Phi \) условию Липшица, то для нахождения \(x_n \) вместо формулы (6.10) без потери сходимости можно использовать формулу

\[
x_n = x_{n-1} + \alpha_n \langle \bar{x}_n - x_{n-1} \rangle ,
\]
в которой \(\alpha_n = \min \left\{ \frac{g_n}{\| x_n - y_n \|} \right\} \), а \(\gamma_n \) удовлетворяет условиям \(\epsilon_1 \leq \gamma_n \leq \left(2 - \epsilon_2 \right) / L \), где \(\epsilon_1, \epsilon_2 > 0 \) не зависят от \(n \); \(L \) - константа Липшица. Причем в этом случае справедлива оценка \(q - h(x_n) \leq Q/n \), где константа \(Q \) не зависит от \(n \).

На каждой итерации метода условного градиента решается задача максимизации линейного функционала на выпуклом множестве

\[\langle f, x \rangle \rightarrow \max, x \in \Phi. \] (6.12)

Для решения задач этого типа широко используются методы, основанные на аппроксимации допустимого множества \(\Phi \) множествами более простой структуры. Предлагается модификация метода отсекающих плоскостей Келли для аппроксимации \(\Phi \) многогранниками, которая и будет изложена.

Предположим, что функционалы \(g_j \) в определении \(\Phi \) выпуклы и непрерывно дифференцируемы. Идея метода отсекающих плоскостей решения задачи (6.12) заключается в построении последовательности многогранников \(K_n \supseteq \Phi \) таких, что всякая точка сгущения последовательности \(x_n \) решений задач линейного программирования

\[\langle f, x \rangle \rightarrow \max, x \in K_n \] (6.13)

при различных \(n \) является решением задачи (6.12). Основным инструментом построения последовательности многогранников \(K_n \supseteq \Phi \) является отсекающее полупространство \(\left(R^m = Y \right) \)

\[L(x) = \{ y \in R^m | g_k(x) + \langle \nabla g_k(x), y - x \rangle \leq 0 \}, \] (6.14)

где \(k \) выбирается из условия \(g_k(x) \geq g_j(x) \) для всех \(j = 1, \ldots, r \). Так как \(g_j \) выпуклы, при любом \(x \in R^m \) справедливо включение \(\Phi \subseteq L(x) \). Обозначим через \(M(n) \) множество решений задачи (6.13), а через \(M \) - множество решений задачи (6.12).

Определение. Будем говорить, что последовательность многогранников \(K_n \) аппроксимирует \(\Phi \) в окрестности \(M \), если \(L_{s_M} M(n) \subseteq M \).

Предположим, что задан исходный компактный многогранник \(K_0 \supseteq \Phi \). Последовательность многогранников

\[K_{n+1} = K_n \cap L(x_n), x_n \in M(n) \] (6.15)

аппроксимирует \(\Phi \) в окрестности \(M \). Этот вполне удовлетворительный теоретический результат с точки зрения практической реализации метода весьма слаб. Дело в том, что с ростом \(n \) в
определении многогранника K_n накапливается много "лишних" ограничений, не несущих никакой информации о нем. Это существенно сужает область практических приложений метода.

Может быть предложена более экономичная схема построения последовательности многогранников K_n в предположении, что известна точка $x^* \in \text{int}\Phi$, в которой накопление "лишних" ограничений идет значительно медленнее. В ней предлагается рассмотреть последовательность многогранников, построенную по формуле

$$K_{n+1} = K_n \cap L(x^*_n),$$

где $x^*_n \in [x^*, x_n] \cap \partial\Phi$, через $\partial\Phi$ обозначена граница множества Φ, $x_n \in M(n)[x^*, x_n] = \{x \in \mathbb{R}^m | x = \alpha x^* + (1-\alpha)x_n, 0 \leq \alpha \leq 1\}$.

В данной работе предлагается метод построения последовательности многогранников K_n, аппроксимирующих Φ в окрестности M, в котором "лишние" накопленные ограничения периодически отбрасываются. Известно, что всякий многогранник в \mathbb{R}^m можно описать в виде

$$K_n = \{x \in \mathbb{R}^m | A_n x \leq b_n\},$$

где $A_n : \mathbb{R}^m \rightarrow \mathbb{R}^{m \times n}$.

Наряду с задачей (6.13) сформулируем двойственную к ней

$$\langle b_n, y \rangle \rightarrow \min A^*_n y = f, y \geq 0.$$ (6.18)

Строки матрицы A_n, вошедшие в оптимальный базис задачи (6.18), назовем базисными. Базисным назовем также многогранник B_n, образованный базисными ограничениями матрицы A_n.

Типичной для задачи (6.13) является ситуация, когда $q_n > m$, поэтому $B_n \supseteq K_n$.

В предлагаемой схеме построения последовательности K_n при формировании K_{n+1}^T используются только базисные ограничения многогранника K_n. Фиксируем последовательность целых положительных чисел T_n и опишем процесс построения K_{n+1}^T, если K_n уже построен. Обозначим $K_n^T = B_n \cap K_0, K_{n+1}^T = K_n^T \cap L(x_n^T)$, где x_n^T есть решение задачи $\langle f, x \rangle \rightarrow \max, x \in K_n^T$. Положим $K_{n+1}^T = K_{n+1}^T \cap x_{n+1}^T = x_{n+1}^T$.

Легко видеть, что $K_n \supseteq \Phi$ при любом n. Ясно, что если $g_j(x_n) \leq 0$ для всех j, то $x_n \in M$, поэтому в дальнейшем будем предполагать, что $a(x_n) = \max_{1 \leq j \leq n} g_j(x_n) = g_n(x_n) > 0$. Изучение описанной схемы начнем со следующего утверждения.
Лемма 6.1. Последовательность \(h_n = \langle f, x_n \rangle \) монотонно убывает и, если \(\Phi \neq \emptyset \), ограничена снизу.

Доказательство. Так как \(K_{n+1} \subseteq B_n \), то \(h_{n+1} \leq h_n \). Пусть \(x_0 \in \Phi \), тогда из включения \(\Phi \subseteq K_n \) вытекает неравенство \(\langle f, x_n \rangle \geq \langle f, x_0 \rangle \) при любом \(n \).

Итак, последовательность \(h_n \) сходится. Положим \(h_0 = \lim_{n \to \infty} h_n \). Ясно, что \(h_0 \geq f_0 = \max \{ f, x \}, x \in \Phi \). Напомним, что нижним пределом последовательности множеств \(Li M(n) \) называется множество точек \(x \), для которых найдутся последовательности \(x_n \in M(n) \) такие, что \(x_n \to x \), верхним пределом последовательности множеств \(Ls M(n) \) называется множество точек \(x \), для которых найдутся последовательности \(x_n \in M(n) \) такие, что для некоторой подпоследовательности \(x_{n_k} \to x \).

Лемма 6.2. Если \(Li M(n) \) непусто, то \(h_0 = f_0 \) и \(Li M(n) \subseteq M \).

Доказательство. Пусть \(x_0 = \lim_{n \to \infty} x_n, x_n \in M(n) \). Если \(x_0 \notin \Phi \), то \(a(x_0) = 0 \). Так как функция \(a \) непрерывна, то существует номер \(n_0 \), начиная с которого справедливы неравенства \(a(x_n) \geq d_n = a(x_0)/2 \equiv a \) и \(\| x_n - x_0 \| < a/2L \), где \(L = \max \max_{l \in \Lambda, j \in \sigma} g_j(x) \). В то же время, так как \(T_n > 0 \), из определения (6.14) вытекает \(\| x_n - x_0 \| \geq a/2L \), если \(n \geq n_0 \). Получено противоречие, которое доказывает, что \(Li M(n) \subseteq \Phi \).

Определение. Покрытие компактного множества \(H \) шарами радиуса \(2\varepsilon \) будем называть регулярным, если центр каждого шара не принадлежит никакому другому шару этого покрытия.

Если диаметр множества \(H \) обозначить через \(d \), то максимально возможное количество шаров в регулярном \(2\varepsilon \)-покрытии множества \(H \) не превосходит величины \(N(H, \varepsilon) = \left(d \sqrt{m/\varepsilon} \right)^m \). Используя конечность регулярных покрытий компактов, можно значительно усилить утверждение леммы 8.

Теорема 6.2. Если \(\Phi \) непусто, то существует такая последовательность чисел \(T_n \), что \(Ls M(n) \subseteq M \).

Доказательство. Пусть \(a(x_n) > 0 \). Введем в рассмотрение множество \(H_n = \{ x \in K_0 \mid a(x) \geq a(x_n)/2, x \leq \langle f, x_n \rangle \} \). Если \(x \in H_n \), то из (6.14) следует, что \(\rho(x, L(x)) \geq a(x)/2L = 2r_n \), (6.19)
где \(\rho(x,A) = \inf \| x - a \| : a \in A \). Зададим \(i \) настолько большим, чтобы \(x'_n \notin H_n \). Первое такое \(i \) обозначим через \(T_n \). Покажем, что число \(T_n \) существует. Из (6.19) следует, что шар \(V_i \) радиусом \(2r_n \) с центром в точке \(x'_n \) не имеет общих точек с многогранниками \(K^i_n \) при \(j > i \). Значит, если \(x'_n \in H_n \), то первые \(i \) шаров можно дополнить до регулярного покрытия \(H_n \) и, следовательно, справедливо неравенство \(i \leq N(H_n, r_n) \). Таким образом, показано, что если \(i > N(H_n, r_n) \), то \(x'_n \notin H_n \), иными словами, для числа \(T_n \) с требуемыми свойствами справедлива оценка \(T_n \leq N(H_n, r_n) \). Так как по лемме 6.1, последовательность \(h_n \) monotonная, то справедливо неравенство \(a(x_{n+1}) < a(x_i)/2 \), из которого вытекает включение \(Ls M(n) \subseteq \Phi \). Полученное включение завершает доказательство теоремы, так как \(h_0 \geq f_0 \) и, следовательно, \(Ls M(n) \subseteq M \).

Доказанная теорема обосновывает эффективность предложенной схемы реализации метода отсекающих плоскостей. На практике для нахождения \(T_n \) после каждого отсечения можно проверять условие конца итерации \(a(x'_n) < a(x_i)/2 \). Определенный интерес представляют варианты реализации схемы, когда этой проверки делать не нужно.

Изучим свойства последовательности \(K_n \), когда \(T_n = 1 \). Обозначим \(B^*_n = \{ v \in R^n | \langle v, x \rangle \leq \langle v, x_n \rangle, x \in B_n \} \). Легко видеть, что \(f \in B^*_n \) при любом \(n \).

Лемма 6.3. Если \(f \in \text{int} B^*_n \), то \(M(n) \) одноэлементно.

Доказательство. Допустим, что найдется \(y \in M(n) \) и \(y \neq x_n \). Ясно, что \(\langle f, y - x_n \rangle = 0 \). Так как \(f \in \text{int} B^*_n \), то найдется \(\varepsilon > 0 \) такое, что \(f_1 = f + \varepsilon(y - x_n) \in B^*_n \). Но для \(f_1 \) выполнено неравенство \(\langle f_1, y - x_n \rangle > 0 \), что противоречит включению \(f_1 \in \text{int} B^*_n \).

Теорема 6.3. Если \(\rho(f, \varepsilon B^*_n) = \psi_n \) и \(T_n = 1 \), то

\[
 h_n - h_{n+1} \geq 2\psi_n r_n ,
\]

где \(r_n \) определено в (6.19).

Доказательство. Так как \(f \in \text{int} B^*_n \), из (6.20) следует включение \(f_1 = f + \psi_n (x_{n+1} - x_n)/\| x_{n+1} - x_n \| \in B^*_n \). Отсюда, \(\langle f_1, x_{n+1} - x_n \rangle \leq 0 \). Следовательно, \(h_n - h_{n+1} \geq \psi_n \| x_{n+1} - x_n \| \). Так как \(x_n \in H_n \), из (6.19) следует, что \(\| x_{n+1} - x_n \| \geq 2r_n \).

Полученное неравенство (6.20) позволяет доказать следующее утверждение.
Теорема 6.4. Если \(T_n = 1 \) и ряд \(\sum_{n=1}^{\infty} \psi_n \) расходится, то \(h_0 = f_0 \) и найдется точка сгущения последовательности \(x_n \), принадлежащая \(M \).

Доказательство. Предположим, что \(\lim_{n \to \infty} a(x_n) > 0 \). Тогда найдутся \(\varepsilon > 0 \) и \(n_0 \) такие, что \(a(x_n) > \varepsilon \) при \(n > n_0 \). Из (6.19) и (6.20) получаем теперь \(h_n \leq h_1 - \sum_{i=1}^{n_0-1} \psi_i \varepsilon/L \). Это неравенство противоречит ограниченному \(h_n \).

Следует отметить, что при численной реализации описанной схемы вместо задачи максимизации (6.13) удобно на каждой итерации решать двойственную задачу линейного программирования (6.18), потому что оптимальное решение предыдущей задачи в этом случае будет допустимым в следующей. Это позволяет не решать на каждой итерации вспомогательную задачу поиска допустимого решения.

Завершающая процедура решения задачи (3.13) заключается в построении функции принадлежности оптимального решения \(Z \) по формуле \(\chi_Z(x) = \sup \{ \alpha \mid x \in Z_\alpha \} \).

Таким образом, алгоритм решения задачи (3.13) состоит из следующих процедур.

1) Процедура вычисления функции принадлежности \(\chi_\Omega \) множества допустимых траекторий задачи (3.13).

2) Процедура вычисления функции принадлежности \(\chi_f \) нечеткой цели задачи (3.13).

3) Процедура построения четкого сечения \(\Omega_\alpha \) множества допустимых траекторий задачи (3.13) по заданному числу \(\alpha : 0 < \alpha \leq 1 \) через формулу \(\Omega_\alpha = \{ x \in R^n \mid \chi_\Omega(x) \geq \alpha \} \).

4) Процедура построения четкого сечения \(f_\alpha \) нечеткой цели задачи (3.13) по заданному числу \(\alpha : 0 < \alpha \leq 1 \) через формулу \(f_\alpha = \{ h \mid \chi_f(h) \geq \alpha \} \).

5) Процедура решения задачи многоцелевой оптимизации, в которой на множестве \(\Omega_\alpha \) максимизируется множество целей \(f_\alpha \). Оптимальное решение этой задачи \(Z_\alpha \) понимается в смысле Парето.

6) Процедура построения функции принадлежности оптимального решения \(Z \) задачи (3.13) по формуле \(\chi_Z(x) = \sup \{ \alpha \mid x \in Z_\alpha \} \).

Все описанные процедуры запрограммированы и включены в систему КАМИН-ФАЗЗИ.
7. Прогнозирование развития экономики России с использованием динамической межотраслевой модели с нечеткими параметрами

Расчеты по прогнозированию развития экономики России на период 2008-2012 гг. выполнялись в два этапа.

1. Выполнялся прогноз с использованием детерминированной ДММ.
2. С учетом результатов прогнозирования экономики России с использованием детерминированной ДММ, выполнялись расчеты по ДММ с нечеткими параметрами.

Основной идеей прогнозных расчетов было исследование возможности достижения в течение ближайших десяти лет (2008-2018 гг.) производства ВВП на душу населения в России в объеме, близком к уровню наименее развитых стран Западной Европы – Греции и Португалии. В 2002 г. с учетом паритета покупательной способности национальной валюты производство ВВП на душу населения в России было примерно в два раза ниже, чем в этих странах [38, с. 769, 771]. Если исходить из увеличения ВВП за десять лет не менее, чем в два раза, то среднегодовой темп его прироста должен быть равен не менее 7,2%. Исходя из названного среднегодового темпа прироста, в период 2008-2012 гг. ВВП должен увеличиться не менее, чем на 41%.

В условиях весьма ограниченных возможностей привлечения дополнительной рабочей силы в производственный процесс основным источником роста производства в России становится рост его эффективности. Действительно, в период экономического подъема (1999-2006 гг.) численность занятых в экономике России возросла на 7,9 %, а производительность труда – на 53,7 % (см. таблицу 1). Рост производительности явился решающим фактором, обеспечившим увеличение ВВП за названный период примерно на две трети.

Основным источником роста производительности труда является простое и расширенное воспроизводство основного капитала, осуществляемое через инвестиции. Инвестиции в основной капитал, обеспечивающие замену устаревшей морально и физически активной части основного капитала, являются «входом» новых технологий в производственный процесс. Сопоставление темпов прироста инвестиций в основной капитал и темпов прироста производительности труда в 1999 – 2006 гг. (см. таблицу 7.1) показывает, что на 1 % прироста первого показателя приходилось 0,46 % прироста второго (53,7/117,5 ≈0,46).
Из сказанного видно, что важнейшим условием достижения поставленной цели увеличения ВВП на душу населения примерно в два раза за 10 лет в условиях ограниченности трудовых ресурсов является значительный рост инвестиций в основной капитал. Если исходить из определенной выше пропорции соотношения темпа прироста инвестиций в основной капитал и производительности труда и предположить, что величина трудовых ресурсов в экономике России в 2008-2012 гг. не увеличится, то можно оценить необходимый темп прироста инвестиций в основной капитал на уровне не менее 90 % (41%/0,46 ≈ 90%) за пять лет или 13,7 % в среднегодовом исчислении.

Другое обоснование высоких темпов роста инвестиций в основной капитал в прогнозируемом периоде связано с необходимостью существенного обновления основных фондов, которое должно быть осуществлено в ближайшие годы.

Необходимость такого рода исследования представлялась вполне обоснованной в связи с тем, что моральный и физический износ основного капитала в России в последние десятилетия достиг такой степени, когда только ускоренный рост производства продукции фондосоздающих отраслей способен обеспечить значительное увеличение производства и рост уровня жизни населения. Данная работа явилась продолжением исследований, проведенных ранее в этом направлении [6].

Таблица 7.1. Темпы роста некоторых важнейших макроэкономических показателей в экономике России в 1999 – 2006 гг., %.

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Темп роста в 1999 – 2006 гг.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Валовой внутренний продукт</td>
<td>165,8</td>
</tr>
<tr>
<td>Расходы на конечное потребление</td>
<td>170,0</td>
</tr>
<tr>
<td>Численность занятых в экономике</td>
<td>107,9</td>
</tr>
<tr>
<td>Основные фонды</td>
<td>105,5</td>
</tr>
<tr>
<td>Производительность труда по ВВП</td>
<td>153,7</td>
</tr>
<tr>
<td>Фондоотдача по основным фондам</td>
<td>157,1</td>
</tr>
<tr>
<td>Инвестиции в основной капитал</td>
<td>217,5</td>
</tr>
<tr>
<td>Ввод в действие основных фондов</td>
<td>211,5</td>
</tr>
<tr>
<td>Среднегодовой прирост ВВП на 1 % прироста инвестиций в основной капитал, %</td>
<td>0,56</td>
</tr>
<tr>
<td>Среднегодовой прирост производительности труда на 1 % прироста инвестиций в основной капитал, %</td>
<td>0,46</td>
</tr>
<tr>
<td>Среднегодовой прирост конечного потребления на 1 % прироста инвестиций в основной капитал, %</td>
<td>0,6</td>
</tr>
</tbody>
</table>

Источники: [33], [40], [47].
В период 1999 – 2006 гг. темп роста инвестиций в основной капитал составил 218 %, ввода в действие основных фондов - 212% (см. таблицу 7.1). Однако, несмотря на значительный прирост инвестиций в основной капитал и ввода основных фондов, абсолютный объем этих показателей в сопоставимых ценах в 2006 г. оставался равным примерно 50 % от уровня 1991 г. В результате в экономике России не произошло существенных позитивных изменений в возрастной структуре основных фондов и степени их износа.

Степень износа основных фондов по народному хозяйству в целом в 1998 г. была равна 40,1 %, в 2005 г. – 44,3 % (см. табл. 7.2), а в 2006 г. – 45,3 %. Степень износа машин и оборудования в 2006 г. была равна 52,5 %. Степень износа основных фондов промышленности в 1998 г. составляла 53,6 %, а в 2005 г. 49,7 %. В связи с увеличением в последние годы объема ввода в действие основных фондов, коэффициент обновления основных фондов по экономике в целом, рассчитываемый Федеральной службой статистики РФ, возрос с 1,1 % в 1998 г. до 2,2 % в 2005 г., а по промышленности с 0,9 % до 2,6 % соответственно (см. таблицу 7.2). При этом коэффициент выбытия основных фондов по экономике РФ в целом оставался неизменным (1,1 %), а по промышленности даже снизился с 1,3 % в 1998 г. до 1,0 % в 2005 г.

Отметим, что в США, имеющих огромный производственный аппарат, коэффициент обновления основного капитала в конце 90-х годов (1998 – 1999 гг.) был существенно выше, чем в России – 5,2 % (посчитано на основе данных [63, с. 496 – 497]).

Приведенная выше информация говорит о том, что в годы экономического подъема пока не произошло заметных позитивных сдвигов качественного состояния производственного аппарата экономики. Большая изношенность основных фондов по – прежнему остается одним из важнейших источников неустойчивости экономического роста и повышения уровня жизни населения в среднесрочном и долгосрочном плане.

Масштабы инвестирования последних лет не могут привести к радикальным сдвигам в возрастной структуре производственного аппарата. В структуре источников финансирования инвестиций в основной капитал по - прежнему доля государства является весьма незначительной. В последние 7 лет (1998 -2006 гг.) доля консолидированного бюджета в финансировании инвестиций в основной капитал составляет примерно 20 %. В области налоговой политики, начиная с 2002 г., была отменена льгота по налогу на прибыль для предприятий, осуществляющих инвестирование своих финансовых ресурсов в обновление и расширение основного капитала. Следовательно, в годы экономического подъема не проводилось активной фискальной политики, способствовавшей ускоренному обновлению основного капитала.
Таблица 7.2. Динамика показателей, характеризующих состояние основного капитала в России в 1998 – 2005 гг., %.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Степень износа основных фондов в экономике в целом</td>
<td>42,2</td>
<td>41,9</td>
<td>42,4</td>
<td>45,8</td>
<td>47,9</td>
<td>49,5</td>
<td>42,8</td>
<td>44,3</td>
<td>2,1</td>
</tr>
<tr>
<td>Коэффициент обновления основных фондов в экономике в целом</td>
<td>1,1</td>
<td>1,2</td>
<td>1,4</td>
<td>1,5</td>
<td>1,6</td>
<td>1,9</td>
<td>2,1</td>
<td>2,2</td>
<td>1,1</td>
</tr>
<tr>
<td>Коэффициент выбытия основных фондов в экономике в целом</td>
<td>1,1</td>
<td>0,9</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td>1,1</td>
<td>1,1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Коэффициент обновления основных фондов в промышленности</td>
<td>0,9</td>
<td>1</td>
<td>1,3</td>
<td>1,5</td>
<td>1,5</td>
<td>1,7</td>
<td>1,8</td>
<td>1,9</td>
<td>1</td>
</tr>
<tr>
<td>Коэффициент выбытия основных фондов в промышленности</td>
<td>1,3</td>
<td>1</td>
<td>1,2</td>
<td>1,1</td>
<td>1</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td>-0,3</td>
</tr>
<tr>
<td>Степень износа основных фондов в промышленности</td>
<td>52,9</td>
<td>55,1</td>
<td>51,6</td>
<td>52,3</td>
<td>51</td>
<td>52,9</td>
<td>51,4</td>
<td>49,7</td>
<td>-3,2</td>
</tr>
<tr>
<td>Доля оборудования в возрасте менее 10 лет в промышленности</td>
<td>24,2</td>
<td>19,3</td>
<td>15,3</td>
<td>13,3</td>
<td>12,5</td>
<td>12,7</td>
<td>н.д.</td>
<td>н.д.</td>
<td>-11,50 1)</td>
</tr>
</tbody>
</table>

1) Разность между данными за 2003 г. и 1998 г.

Источники: [41, с. 327-329].
Представляется, что в ситуации критического состояния производственного аппарата государство должно проводить более активную экономическую политику, способствующую ускоренному обновлению основного капитала. В области кредитно – денежной политики это – комплекс мер по снижению реальной ставки процента для кредитования бизнеса. В фискальной политике – возврат к стимулированию инвестиций через налоговые льготы. Однако, по нашему мнению, в сложившейся ситуации использование только рычагов косвенного регулирования инвестиционного процесса представляется недостаточным. В условиях сбалансированности бюджета и его профицита государство в лице федерального центра и органов управления субъектов федерации может напрямую частично финансировать наиболее приоритетные инвестиционные проекты инновационного характера и в области создания инфраструктуры (дорожное строительство, строительство аэропортов, морских портов и т.д.). Такой вариант экономической политики в области инвестирования будет способствовать переходу экономики на траекторию роста инновационного типа, предусмотренную одним из вариантов развития экономики России в 2008-2010 гг. в соответствии с прогнозами Правительства РФ [19]. Государственное финансирование должно осуществляться преимущественно на конкурсной основе. Механизм принятия решений по финансированию должен быть максимально прозрачным и находиться под контролем общества.

В связи с вышесказанным, представляется целесообразным дальнейшее изучение возможностей большего прямого финансирования государством в лице консолидированного бюджета части инвестиций на обновление основного капитала.

Существенный рост инвестиций в основной капитал и, особенно, в его активную часть возможен и с точки зрения более полного использования производственных мощностей. Уровень использования производственных мощностей машиностроения в России остается низким. В 2005 г. использование мощностей в машиностроении колебалось от 3,9 % (производство мостовых электрических кранов) до 68 % (производство легковых машин) (см. таблицу 7.3).

По нашей оценке, в среднем по промышленности уровень использования производственных мощностей в 2002 г. составил примерно 42% (посчитано на основе данных ФСГС РФ). Это открывает возможности значительного роста производства средств труда частично за счет увеличения использования мощностей в машиностроении. Хотя остается открытым важнейший вопрос о возможности реального использования этих мощностей и способности производить на их основе конкурентоспособную продукцию. Другой вариант широкомасштабного обновления активной части основных фондов состоит в массовом импорте машин и оборудования, что окажет негативное воздействие на величину счета текущих операций и платежного баланса в целом.
В результате ускоренного роста инвестиций в основной капитал коэффициент его возмещения выбытия должен значительно увеличиться. По нашей оценке, для обеспечения стабильного экономического роста на траектории инновационного развития коэффициент возмещения выбытия основного капитала должен возрасти, как минимум в три раза. Поэтому в расчетах принималась гипотеза о том, что в 2012 г названный макроэкономический параметр будет равен примерно 3,3 %. В том числе коэффициент возмещения выбытия для активной части основного капитала должен возрасти с 1,6 % в 2007 г. до 4,8 % в 2012 г, а по пассивной части – с 1% до 1,5 % соответственно. Одновременно предполагалось, что величина основных фондов будет увеличиваться примерно тем же темпом, что и в последние годы. Иначе говоря, инвестиции в основной капитал должны были обеспечить его ускоренное обновление в условиях, когда среднегодовые темпы прироста основного капитала будут равны 1 %. При заданных условиях увеличения коэффициентов возмещения выбытия темп роста инвестиций в основной капитал определялся эндогенно в ходе решения задачи по ДММ для 2008-2012 гг.

Третий аспект, нашедший отражение при формировании вариантов прогнозных расчетов по ДММ с нечеткими параметрами, состоял в необходимости обеспечения увеличения конечного потребления населения в прогнозном периоде не менее, чем в два раза. В 1999 – 2006 гг. на 1 % прироста ВВП приходилось 0,94 % прироста конечного потребления (см. таблицу 7.1). Исходя из этой пропорции, темп роста ВВП за 10 лет должен составить примерно 206 % (100 % + (100%/0,94)). Для прогнозного периода (2008-2012 гг.) темп прироста ВВП должен составить 43,5%. В 1999 – 2006 гг. коэффициент, характеризующий соотношение между темпом прироста ВВП и темпом прироста инвестиций в основной капитал, был равен 0,56 (см. таблицу 7.1). Следовательно, в 2008 – 2012 гг. инвестиции в основной капитал должны возрасти не менее чем на 78 % (43,5 % / 0,56 ≈78%).

Данные выше оценки, исходящие из необходимости обеспечения требуемого прироста конечного потребления и производительности труда, позволяют сделать вывод о том, что достижение целевых показателей развития экономики России в 2008-2012 потребует увеличения инвестиций в основной капитал не менее чем на 80 % – 90 %.

Уточнение названного параметра было осуществлено в ходе прогнозных расчетов с использованием ДММ.

Во всех расчетных вариантах делаются следующие предположения.

1. Предполагается, что к 2012 г. величина чистого экспорта экономики России сократится. В оптимистическом варианте она уменьшится на 33%, а песимистическом – на 8 %. Большее уменьшение сальдо в оптимистическом варианте обосновывается тем, что по этому варианту будет иметь место значительно более высокий темп роста ВВП и, как следствие, – более высокий темп роста импорта. В целом заданная динамика чистого экспорта является намного более
оптимистичной по сравнению с вариантом, предусмотренным прогнозом развития экономики РФ, разработанным МЭРТ РФ. В министерском прогнозе уже в 2010 г. чистый экспорт приближается к нулевому значению [19]. Представляется, что такое развитие событий является излишне пессимистичным.

2. Величина трудовых ресурсов и численность населения России остается неизменной на протяжении всего прогнозного периода и равны значениям этих показателей в базовом году. Иначе говоря, предполагается, что меры Правительства РФ по стимулированию рождаемости и снижению смертности, а также по переселению соотечественников из зарубежа приносят быстрый желаемый эффект.

3. Темп роста валового выпуска и ВВП принимаются равными.

3. Отраслевые коэффициенты трудоемкости, фондоемкости, материалоемкости определяются эндогенно, исходя из расчетного валового выпуска и величины трудовых ресурсов.

В расчетах были реализованы следующие варианты развития экономики России.

В первом (оптимистическом) варианте сделаны следующие предположения.

1. Исходя из гипотезы удвоения ВВП России за десять лет и соответствующего увеличения уровня жизни населения, темп прироста расходов на конечное потребление в 2008 – 2012 гг. должен быть равен не менее 41 %. В данном варианте предполагается, что экономика России идет по инновационному пути развития, что дает возможность обеспечить существенное повышение уровня жизни населения, обеспечить диверсификацию экспорта (уход от зависимости от конъюнктуры мирового рынка энергоносителей) и более устойчивый экономический рост.

2. Ввод в действие основных фондов возрастает не менее чем на 90 % в течение всего прогнозируемого периода. Темп роста инвестиций в основной капитал составляет не менее чем 2 раза.

3. Коэффициенты возмещения выбытия активной и пассивной частей основных фондов за весь прогнозируемый период по экономике России в целом возрастают в 3 раза и в 1,5 раза соответственно. Вариант значительного обновления производственного аппарата позволяет ускорить внедрение новых технологий в производственные процессы и повысить эффективность производства.

Второй (пессимистический) вариант построен при следующих предположениях.

1. ВВП и валовой выпуск экономики России в 2008 – 2012 гг. увеличиваются темпом примерно 30 %, что соответствует среднегодовому темпу прироста, равному 5,2 %. Этот темп прироста соответствует тому, который предусмотрен инерционным вариантом развития экономики РФ, включенному в прогноз Министерства экономического развития и торговли России для периода 2008 - 2010 гг. [19].
2. Предусмотрено менее незначительное ускорение обновления машин и оборудования. Коэффициент возмещения выбытия активной части основных фондов постепенно увеличится с 1,6 % в 2007 г. до 3,2 % в 2012 г., а пассивной части основных фондов – с 1 % до 1,2 % соответственно (см. табл. 7.4). Инвестиции в основной капитал возрастают примерно на 38 % (97% в оптимистическом варианте), в том числе инвестиции в активную часть основных фондов на 48 % (214% в оптимистическом варианте).

Как это видно из приведенного выше краткого описания гипотез, заложенных в вариантах расчетов, в них рассматриваются различные вариации ускоренного обновления основных фондов в экономике России и, прежде всего, их активной части.

Необходимо отметить, что в рамках первого и второго прогнозных вариантов на протяжении рассматриваемого периода происходит существенный рост продукции фондосоздающего машиностроения (см. Приложение). Вместе с тем предполагается, что во всех отраслях экономики происходит увеличение интенсивности использования основных фондов: рост фондоотдачи или снижение фондоемкости (см. таблицу 4). Рост фондоотдачи в прогнозных расчетах обосновывается вовлечением в производство, по мере его роста, существенной части неиспользуемых в настоящее время производственных мощностей и использованием новых более эффективных основных фондов, вводимых в действие в течение рассматриваемого периода.

Необходимым условием достижения заложенных в рассматриваемых вариантах темпов роста продукта является наращивание инвестиций в основной капитал с приоритетным инвестированием фондосоздающих и смежных с ними отраслей.

Отметим и такое ограничение экономического роста для экономики России, как недостаток квалифицированной рабочей силы. За последние тринадцать лет система воспроизводства квалифицированных трудовых ресурсов претерпела негативные изменения, в особенности в части подготовки квалифицированных рабочих. Поэтому дальнейший рост производства в большинстве отраслей неизбежно столкнется с проблемой обеспечения квалифицированными кадрами.

Таблица 7.3. Прогнозные темпы роста некоторых важнейших показателей экономики России в 2008 - 2012 гг., %.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Валовой выпуск и ВВП - всего</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>оптимистический вариант</td>
<td>107,5</td>
<td>107,5</td>
<td>107,5</td>
<td>107,5</td>
<td>107,5</td>
<td>143,6</td>
</tr>
<tr>
<td>пессимистический вариант</td>
<td>105,4</td>
<td>105,4</td>
<td>105,4</td>
<td>105,4</td>
<td>105,4</td>
<td>130,1</td>
</tr>
<tr>
<td>Валовой выпуск 1 подразделения</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>оптимистический вариант</td>
<td>109,2</td>
<td>106,9</td>
<td>107,0</td>
<td>107,4</td>
<td>107,6</td>
<td>144,4</td>
</tr>
<tr>
<td>пессимистический вариант</td>
<td>106,8</td>
<td>104,6</td>
<td>104,6</td>
<td>104,9</td>
<td>105,0</td>
<td>128,7</td>
</tr>
<tr>
<td>Валовой выпуск 2 подразделения</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>оптимистический вариант</td>
<td>104,4</td>
<td>108,6</td>
<td>108,5</td>
<td>107,7</td>
<td>107,2</td>
<td>142,0</td>
</tr>
<tr>
<td>пессимистический вариант</td>
<td>102,8</td>
<td>106,8</td>
<td>107,0</td>
<td>106,4</td>
<td>106,1</td>
<td>132,7</td>
</tr>
<tr>
<td>Основные фонды – всего</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>оптимистический вариант</td>
<td>101,6</td>
<td>101,8</td>
<td>102,0</td>
<td>102,3</td>
<td>102,7</td>
<td>110,8</td>
</tr>
<tr>
<td>Продолжение таблицы 7.3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>пессимистический вариант</td>
<td>101,5</td>
<td>101,6</td>
<td>101,6</td>
<td>101,7</td>
<td>101,8</td>
<td>108,6</td>
</tr>
<tr>
<td>в том числе</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Активная часть основных</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>фондов</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>оптимистический вариант</td>
<td>102,0</td>
<td>102,0</td>
<td>102,1</td>
<td>102,4</td>
<td>102,7</td>
<td>111,8</td>
</tr>
<tr>
<td>пессимистический вариант</td>
<td>102,0</td>
<td>102,0</td>
<td>102,0</td>
<td>102,0</td>
<td>102,0</td>
<td>110,3</td>
</tr>
<tr>
<td>Пассивная часть основных</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>фондов</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>оптимистический вариант</td>
<td>101,4</td>
<td>101,6</td>
<td>101,9</td>
<td>102,3</td>
<td>102,6</td>
<td>110,3</td>
</tr>
<tr>
<td>пессимистический вариант</td>
<td>101,3</td>
<td>101,4</td>
<td>101,5</td>
<td>101,6</td>
<td>101,7</td>
<td>107,6</td>
</tr>
<tr>
<td>Инвестиции в основной капитал</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– всего</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>оптимистический вариант</td>
<td>114,6</td>
<td>113,9</td>
<td>114,4</td>
<td>114,7</td>
<td>115,0</td>
<td>196,9</td>
</tr>
<tr>
<td>пессимистический вариант</td>
<td>106,7</td>
<td>106,5</td>
<td>106,6</td>
<td>106,8</td>
<td>106,9</td>
<td>138,3</td>
</tr>
<tr>
<td>в том числе</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>инвестииции в активную часть</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ОФ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>оптимистический вариант</td>
<td>117,5</td>
<td>115,9</td>
<td>116,2</td>
<td>116,3</td>
<td>116,2</td>
<td>213,7</td>
</tr>
<tr>
<td>пессимистический вариант</td>
<td>109,1</td>
<td>108,0</td>
<td>108,1</td>
<td>108,0</td>
<td>107,9</td>
<td>148,4</td>
</tr>
<tr>
<td>инвестииции в пассивную часть</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ОФ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>оптимистический вариант</td>
<td>112,3</td>
<td>112,3</td>
<td>112,8</td>
<td>113,4</td>
<td>113,9</td>
<td>183,8</td>
</tr>
<tr>
<td>пессимистический вариант</td>
<td>104,9</td>
<td>105,3</td>
<td>105,4</td>
<td>105,7</td>
<td>106,0</td>
<td>130,4</td>
</tr>
<tr>
<td>Коэффициент возмещение выбытия ОФ - всего, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>оптимистический вариант</td>
<td>1,5</td>
<td>1,8</td>
<td>2,2</td>
<td>2,5</td>
<td>2,8</td>
<td>1,2</td>
</tr>
<tr>
<td>пессимистический вариант</td>
<td>1,4</td>
<td>1,5</td>
<td>1,7</td>
<td>1,8</td>
<td>2,0</td>
<td>1,2</td>
</tr>
<tr>
<td>в том числе</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Коэффициент возмещение выбытия активной части ОФ, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>оптимистический вариант</td>
<td>2,3</td>
<td>2,9</td>
<td>3,6</td>
<td>4,2</td>
<td>4,9</td>
<td>1,6</td>
</tr>
<tr>
<td>пессимистический вариант</td>
<td>1,9</td>
<td>2,3</td>
<td>2,6</td>
<td>2,9</td>
<td>3,3</td>
<td>1,6</td>
</tr>
<tr>
<td>Коэффициент возмещение выбытия пассивной части ОФ, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>оптимистический вариант</td>
<td>1,1</td>
<td>1,2</td>
<td>1,3</td>
<td>1,4</td>
<td>1,5</td>
<td>1,0</td>
</tr>
<tr>
<td>пессимистический вариант</td>
<td>1,0</td>
<td>1,1</td>
<td>1,1</td>
<td>1,2</td>
<td>1,2</td>
<td>1,0</td>
</tr>
<tr>
<td>Фондоемкость валового выпуска</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>оптимистический вариант</td>
<td>94,5</td>
<td>94,7</td>
<td>94,9</td>
<td>95,2</td>
<td>95,5</td>
<td>77,2</td>
</tr>
<tr>
<td>пессимистический вариант</td>
<td>96,3</td>
<td>96,4</td>
<td>96,4</td>
<td>96,5</td>
<td>96,6</td>
<td>83,5</td>
</tr>
<tr>
<td>Материалоемкость валового выпуска</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>оптимистический вариант</td>
<td>98,0</td>
<td>98,0</td>
<td>98,3</td>
<td>98,3</td>
<td>98,4</td>
<td>91,4</td>
</tr>
<tr>
<td>пессимистический вариант</td>
<td>98,8</td>
<td>98,9</td>
<td>99,3</td>
<td>99,4</td>
<td>99,6</td>
<td>96,1</td>
</tr>
<tr>
<td>Примечание: результаты расчетов по ДММ экономики России.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7.2. Результаты прогнозных расчетов с использованием ДММ с нечеткими параметрами и их интерпретация

Второй этап прогнозирования развития экономики России состоял в проведении расчетов по ДММ с нечеткими параметрами. В основу этих расчетов были положены результаты прогнозирования экономики России по детерминированной ДММ.

В ходе данных расчетов было выполнено несколько экспериментов. При этом степень правдоподобности того или иного высказывания понималась следующим образом (см. [32]).

Именно, под нечетким множеством \(A \) в пространстве \(X \) понимается геометрический объект, обладающий следующим свойством: для каждого \(x \in X \) определено число \(\chi_A(x): 0 \leq \chi_A(x) \leq 1 \), которое и интерпретируется как степень правдоподобности высказывания о том, что \(x \in A \). Если \(\chi_A(x)=0 \), то высказывание \(x \in A \) абсолютно неправдоподобно, если \(\chi_A(x)=1 \), то высказывание \(x \in A \) абсолютно правдоподобно. Функция \(\chi_A: X \rightarrow I \) называется функцией принадлежности (нечеткого) множества \(A \). Здесь \(I = [0;1] \), \(X \rightarrow I \) - пространство измеримых отображений \(f: X \rightarrow I \).

Фактически нечеткое задание параметров ДММ и вычисление нечетких значений исследуемых экономических показателей приводит к новому пониманию макроэкономической устойчивости. Предложенная в работе [35] методика оценки надежности прогнозируемых показателей может интерпретироваться также как оценка устойчивости вычисленных нечетких показателей по отношению к нечеткому описанию экзогенных параметров модели.

Геометрическая характеристика устойчивости представляет собой отношение площади пересечения подграфиков функций принадлежности исследуемого показателя и эталона к общей площади подграфика эталона.

Для построения функции принадлежности вычисляемых показателей применялся описанный выше стохастический алгоритм. В каждом эксперименте те или иные параметры ДММ задавались нечетко в рамках заданных ограничений, проводилось 200 расчетов по ДММ, результаты которых в части исследуемых показателей обрабатывались с помощью стохастической процедуры построения функции принадлежности и отображены на графиках, приведенных ниже. Например, на графике 7.1 приведено нечеткое представление прогнозируемого темпа роста валового выпуска экономики России за период 2008-2012 гг.

В приведенных ниже результатах расчетов степень нечеткости параметров варьировалась в пределах от 10 до 25 процентных пунктов от значений параметров, определенных на основе результатов расчетов по детерминированной модели.

Для расчета уровня устойчивости каждый выборочный показатель (например, валовой выпуск народного хозяйства) сравнивался с эталонным нечетким описанием его наиболее правдоподобного значения, рассчитанного по выборке. Для вычисления наиболее
правдоподобного значения x_0 решалась задача максимизации функции принадлежности χ_p показателя p:

$$\chi_p(x_0) = \max_{x \in R} \chi_p(x).$$

где R – вещественная прямая.

Эталонное нечеткое представление значения x_0 рассчитывалось с помощью стохастической процедуры со степенью нечеткости, равной половине размаха выборки исследуемого показателя при 10% уровне нечеткости изменяемых параметров.

Конечно, измерение степени устойчивости прогнозируемых экономических показателей относительно выбранного эталона приводит к тому, что вычисленные значения устойчивости зависят от выбора эталона. Однако, достаточно легко показывается, что значения устойчивости исследуемых экономических показателей пропорционально увеличиваются или пропорционально уменьшаются при замене одного эталона другим. При этом соотношения устойчивости прогнозируемых показателей остаются неизменными.

Кратко опишем некоторые результаты экспериментальных расчетов.

1. Определялось, насколько правдоподобно событие, состоящее в том, что темп роста валового выпуска экономики России будет равен 143,6% (наиболее правдоподобное значение показателя в оптимистическом варианте) в условиях, когда важнейшие параметры ДММ задаются нечетким образом в заданных заранее пределах. Аналогично определялась степень правдоподобности достижения темпа роста валового выпуска 1 (144,4%) и второго (142,0%) подразделений. При этом одновременно нечетко задавались следующие параметры: 1) темп роста за пять лет численности занятых в экономике.; 2) величина ввода в действие основных фондов в каждом году прогнозного периода; 3) темп роста за пять лет сальдо внешней торговли; 4) темп роста за пять лет каждого элемента матрицы материальноемкости; 5) отраслевая структура ввода в действие основных фондов; 6) темп роста производительности труда (нечетко задавался темп роста каждого элемента этого вектора). «Раскачка» вышеперечисленных параметров проводилась в нескольких диапазонах, имея ввиду их отклонение от прогнозного значения, определенного экспертным путем на основе анализа ретроспективных данных: $\pm 10\%$, $\pm 15\%$, $\pm 20\%$, и $\pm 25\%$. Отклонение изменяемых параметров нарастало от года к году, что соответствовало гипотезе о том, что неопределенность в их значении увеличивается по мере отдаления от базового года. Например, для варианта вариации параметров на $\pm 10\%$ динамика нарастания отклонений задавалась следующим образом: $\pm 2\%$ в 2008 г., $\pm 4\%$ в 2009 г., $\pm 6\%$ в 2010 г., $\pm 8\%$ в 2011 г., $\pm 10\%$ в 2012 г. По аналогии
задавалась нарастающая динамика отклонений для других диапазонов вариации параметров. Примеры результатов расчетов по первому эксперименту приведены на рисунках 7.1, 7.2. Результаты первого эксперимента сведены в таблицу 7.4.

Таблица 7.4. Изменение уровня устойчивости валового выпуска экономики России в зависимости от степени изменения 6 групп параметров.

<table>
<thead>
<tr>
<th>Показатель</th>
<th>± 10%</th>
<th>± 15%</th>
<th>± 20%</th>
<th>± 25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Уровень устойчивости для валового выпуска в целом</td>
<td>95,6</td>
<td>79,1</td>
<td>69,0</td>
<td>50,5</td>
</tr>
<tr>
<td>Уровень устойчивости для валового выпуска 1 подразделения</td>
<td>94,8</td>
<td>77,0</td>
<td>63,1</td>
<td>49,2</td>
</tr>
<tr>
<td>Уровень устойчивости для валового выпуска 2 подразделения</td>
<td>93,9</td>
<td>74,1</td>
<td>61,6</td>
<td>47,4</td>
</tr>
</tbody>
</table>

Из приведенных результатов расчетов можно сделать вывод о том, что наименее устойчивым к изменению 6 важнейших параметров оказался валовой выпуск второго подразделения экономики России.

Рис 7.1. Функция принадлежности нечеткого темпа роста валового выпуска экономики России, соответствующего оптимистическому варианту ее развития, при нечетком задании 6 важнейших параметров с колебаниями их в пределах ±10%.

Уровень устойчивости (степень правдоподобности совпадения выборочного и эталонного показателей) равен 95,6%.

Рис 7.2. Функция принадлежности нечеткого темпа роста валового выпуска экономики России, соответствующего оптимистическому варианту ее развития, при нечетком задании 6 важнейших параметров с колебаниями их в пределах ±15%.

Уровень устойчивости (степень правдоподобности совпадения выборочного и эталонного показателей) равен 79,1%.
2. Определялось, насколько правдоподобно событие, состоящее в том, что темп роста валового выпуска экономики России будет равен 143,6 % (наиболее правдоподобное значение показателя в оптимистическом варианте) в условиях, когда величина ввода в действие основных фондов и производительность труда в ДММ задаются нечетким образом в заданных заранее пределах. «Раскачка» показателей нарастала от года к году также как и в первом эксперименте. Рассматривались случаи нечеткого представления ввода в действие основных фондов и производительность труда, когда эти параметры отклонялись от эталонного значения на ±10%, ±20%. Аналогично определялась степень правдоподобности достижения темпа роста валового выпуска первого (144,4%) и второго (142,0%) подразделений. Результаты второго эксперимента сведены в таблицу 7.5.

Таблица 7.5. Изменение уровня устойчивости валового выпуска экономики России в зависимости от степени изменения ввода в действие основных фондов и производительности труда.

<table>
<thead>
<tr>
<th>Показатель</th>
<th>± 10%</th>
<th>± 20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Уровень устойчивости для валового выпуска в целом</td>
<td>93,9</td>
<td>56,0</td>
</tr>
<tr>
<td>Уровень устойчивости для валового выпуска 1 подразделения</td>
<td>95,0</td>
<td>68,1</td>
</tr>
<tr>
<td>Уровень устойчивости для валового выпуска 2 подразделения</td>
<td>97,2</td>
<td>38,2</td>
</tr>
</tbody>
</table>

Из данных таблицы 6 видно, что экономика России очень чувствительна к изменениям ввода в действие основных фондов и связанным с ним колебаниям производительности труда. Особое внимание обращает на себя огромная неустойчивость динамики продукции 2 подразделения по отношению к колебаниям варьируемых параметров.

Опираясь на проведенные предварительные прогнозные расчеты по ДММ с нечеткими параметрами можно сделать вывод о том, что устойчивый экономический рост, обеспечивающий значительное увеличение уровня жизни населения, возможен лишь при стабильном обновлении основного капитала посредством обеспечения высоких темпов роста ввода основных фондов, приводящих к существенному увеличению производительности труда.
3. В третьем эксперименте изучалась устойчивость динамики фондоемкости валового выпуска экономики России по отношению к колебаниям вводов в действие основных фондов и связанных с ними колебаниями производительности труда. Результаты этого эксперимента продемонстрированы на рисунках 7.3 – 7.4.

Рис 7.3. Функция принадлежности нечеткого темпа роста фондоемкости валового выпуска экономики России, соответствующая оптимистическому варианту ее развития, при нечетком задании динамики ввода в действие основных фондов и производительности труда с колебаниями их в пределах ±10%. Уровень устойчивости (степень правдоподобности совпадения выборочного и эталонного показателей) равен 93,4 %.

Рис 7.4. Функция принадлежности нечеткого темпа роста фондоемкости валового выпуска экономики России, соответствующая оптимистическому варианту ее развития, при нечетком задании динамики ввода в действие основных фондов и производительности труда с колебаниями их в пределах ±20%. Уровень устойчивости (степень правдоподобности совпадения выборочного и эталонного показателей) равен 61,5 %.
4. Следующий эксперимент состоял в «раскачке» темпов роста материалоемкости. Темп роста за пять лет каждого элемента матрицы материалоемкости варьировал в пределах ±10% и ±20%. Результаты расчетов представлены на рисунках 7.5 – 7.8.

Рис. 7.5. Функция принадлежности нечеткого темпа роста валового выпуска 1 подразделения экономики России, соответствующая оптимистическому варианту ее развития, при нечетком задании динамики материалоемкости с колебаниями их в пределах ±10%. Уровень устойчивости (степень правдоподобности совпадения выборочного и эталонного показателей) равен 88,7 %.

Рис. 7.6. Функция принадлежности нечеткого темпа роста валового выпуска 1 подразделения экономики России, соответствующая оптимистическому варианту ее развития, при нечетком задании динамики материалоемкости с колебаниями их в пределах ±20%. Уровень устойчивости (степень правдоподобности совпадения выборочного и эталонного показателей) равен 69,0 %.

Рис. 7.7. Функция принадлежности нечеткого темпа роста валового выпуска 2 подразделения экономики России, соответствующая оптимистическому варианту ее развития, при нечетком задании динамики материалоемкости с колебаниями их в пределах ±10%. Уровень устойчивости (степень правдоподобности совпадения выборочного и эталонного показателей) равен 89,5 %.
Рис. 7.8. Функция принадлежности нечеткого темпа роста валового выпуска 2 подразделения экономики России, соответствующая оптимистическому варианту ее развития, при нечетком задании динамики материоемкости с колебаниями их в пределах ± 20%. Уровень устойчивости (степень правдоподобности совпадения выборочного и эталонного показателей) равен 88,8 %.

Результаты четвертого эксперимента продемонстрировали намного большую устойчивость второго подразделения по сравнению с первым подразделением относительно варьирования темпов роста материоемкости.

Основные выводы.

1. Для выхода экономики России на траекторию стабильного экономического роста со значительным (не менее чем в два раза) увеличением ВВП за 10 лет (2008-2017 гг.) необходимо увеличение инвестиций в основной капитал в 2008-2012 гг. примерно в два раза, в том числе инвестиций в активную часть основного капитала - не менее чем в 2,1-2,2 раза.
2. Количественные оценки параметров ускоренного обновления основного капитала показывают, что коэффициент возмещения выбытия основного капитала должен возрасти с 1,2 % в 2007 г. до 2,8 % в 2012 г., в том числе по активной части основного капитала с 1,6 % в 2007 г. до 4,9 % в 2012 г.

3. Результаты расчетов по ДММ показывают, что в период 2008-2012 гг. валовой выпуск фондосоздающих отраслей машиностроения и строительства должны расти темпом примерно 210 % и 180 % соответственно. В случае невозможности обеспечения таких темпов роста фондосоздающих отраслей весьма значительно должен увеличиться импорт машин и оборудования с отрицательными последствиями для сбалансированности платежного баланса.

4. Нечеткое задание параметров ДММ и вычисление нечетких значений исследуемых прогнозных показателей может интерпретироваться как оценка устойчивости вычисленных нечетких показателей (валового выпуска, основных фондов и т.д.) по отношению к нечеткому описанию параметров модели.

5. Нечеткое описание темпов роста материальноемкости с различной степенью их «раскачки» продемонстрировало намного большую устойчивость второго подразделения по сравнению с первым по отношению к варьированию этого показателя.

6. Нечеткое описание величины ввода в действие основных фондов и производительности труда в ДММ показало, что экономика России в прогнозируемом периоде ведет себя весьма неустойчиво по отношению к вариации названных параметров. Это показывает, что устойчивый экономический рост, обеспечивающий значительное увеличение уровня жизни населения, возможен лишь при стабильном обновлении основного капитала посредством обеспечения высоких темпов роста ввода основных фондов, приводящих к существенному увеличению производительности труда.

8. Методика анализа устойчивости прогнозируемых экономических показателей

8.1. Основные определения

Пусть $D \in R^n$ есть набор экзогенных параметров некоторой макроэкономической модели и x - прогнозируемый макроэкономический показатель. Будем считать, что процедура вычисления прогнозируемого показателя x по этой модели имеет вид

$$x = F(D).$$

(8.1)
Если экзогенные параметры содержат ошибки измерения \(D'_j = D_j \pm r_j \), то прогнозируемый показатель также содержит ошибку \(x' = x \pm \Delta x \). Если функция \(F \) из (2.1) непрерывно дифференцируема по каждой переменной, то для ошибки прогнозируемого параметра справедливо равенство

\[
\Delta x = \sum_j \frac{\partial F(D)}{\partial D_j} \cdot r_j + o(\|r\|),
\]

где через \(o(\|r\|) \) обозначена бесконечно малая по сравнению с максимальной величиной ошибки.

Если через \(r_j \) задается максимальная величина ошибки \(j \)-го параметра, а фактическая ошибка распределена по интервалу \((D_j - r_j, D_j + r_j) \) с заданной функцией распределения, то ошибка прогнозируемого параметра также является случайной величиной.

Рассмотрим теперь межотраслевую модель с нечеткими параметрами (см. раздел 3), и для вычисления прогнозируемого показателя применим стохастический алгоритм (см. пункт 4.8 раздела 4). Если все или часть экзогенных параметров \(D_j \) будут заданы нечетко, то прогнозируемый показатель \(x \) также будет нечетким множеством. В терминах нечетких множеств мы можем оценить надежность совпадения \(T_p(x_1; x_2) \) двух значений прогнозируемого показателя \(x_1 \) и \(x_2 \) по формуле (1.6). Очевидно, если функции принадлежности нечетких множеств \(x_1 \) и \(x_2 \) совпадают, то \(T_p(x_1; x_2) = 1 \), в противном случае \(0 \leq T_p(x_1; x_2) < 1 \). Используя функцию \(T_p(x_1; x_2) \), можно оценить, насколько согласуются (нечеткие) значения экзогенных параметров \(D \) и заданное (нечеткое) значение прогнозируемого показателя \(x \).

Определение 8. Степенью согласованности нечетких значений экзогенных параметров \(D \) и нечеткого значения прогнозируемого показателя \(x \) будут считать величину \(T_p(x; F(D)) \).

8.2. Методика количественного анализа устойчивости

Больной интерес в рамках анализа экономической динамики представляет вопрос количественной оценки устойчивости траекторий исследуемых показателей. При достаточно высокой степени изученности данного вопроса в случае ретросpektивного анализа, вопрос количественной оценки устойчивости траекторий исследуемых показателей на прогнозную перспективу остается, на наш взгляд, недостаточно проработанным.

Аппарат математической статистики позволяет оценивать степень устойчивости траектории исследуемого показателя на основе показателей дисперсии и стандартного отклонения

8 В приложениях всегда используется значение \(p = 1 \).
в случае ретроспективного анализа, а также степень отклонения исследуемого показателя относительно его точечной оценки на перспективу на основе квантильной регрессии. Однако указанный подход имеет ограниченное применение, так как основывается на детерминированном значении объясняющих факторов, не позволяя в итоге оценивать степень влияния исходной неопределенности в значениях экономических показателей на динамику анализируемого показателя.

Сложившееся на настоящий момент понятие устойчивости динамики экономических показателей предполагает их устойчивость относительно некоего уровня, определяемого их трендом, предполагая, таким образом, детерминистский подход к анализу экономического развития. Однако в условиях высокой неопределенности экономических систем само понятие тренда является, на наш взгляд, размытым, а использование подобного подхода не позволяет в полной мере учитывать сложные взаимосвязи экономического развития и ограничивает сферу решаемых на его основе задач.

Предлагаемый в рамках настоящего исследования инструментарий позволяет, на наш взгляд, не только количественно оценивать уровень устойчивости, но и оценивать степень согласованности (соответствия) неопределенности прогнозной траектории исследуемого показателя с неопределенностью траектории экзогенных параметров модели. Благодаря этому реализуемый подход позволяет количественно измерить степень увеличения или уменьшения исходной неопределенности экономической системы в динамике различных анализируемых показателей, что позволяет по-новому взглянуть на традиционное понятие устойчивости динамики экономических показателей.

Количественное измерение устойчивости траектории исследуемого показателя основывается на расчете коэффициента устойчивости (и), расчет которого, в свою очередь, основывается на коэффициенте степени согласованности нечетких значений экзогенных параметров и нечеткого значения прогнозируемого показателя, описание которого приведено в пункте 4.4 раздел 4 данного отчета.

При построении коэффициента устойчивости на основе степени согласованности возникают некоторые методические трудности. Это связано со следующими аспектами:

1) коэффициент согласованности для абсолютно устойчивого показателя и показателя, имеющего высокую степень неустойчивости, близок к нулю, что не позволяет связать коэффициент устойчивости с коэффициентом согласованности непрерывно дифференцируемой функцией;

2) показатель, имеющий коэффициент согласованности равный 100%, обладает неустойчивостью, соответствующей неустойчивости эталонного образца;
3) Коефициенты устойчивости, измеренные для разных показателей, должны быть сопоставимы между собой, то есть показатель, обладающий большей устойчивостью, должен иметь больший коэффициент устойчивости.

Учитывая данные аспекты, предлагается следующий подход к измерению коэффициента устойчивости \((u(s))\) на базе коэффициента согласованности.

Определение коэффициента согласованности функций принадлежности предполагает сравнение функции принадлежности одного показателя с функцией принадлежности другого. Для сопоставимости данных по степени согласованности нескольких экономических показателей необходимо выбрать единую базу для их сравнения, то есть или задать один из рассматриваемых показателей в качестве эталона, или ввести некую эталонную функцию принадлежности. В данном исследовании реализован второй подход, одним из преимуществ которого является обеспечение сопоставимости результатов, полученных в рамках различных исследований при условии использования единой эталонной функции принадлежности.

Введем понятие устойчивости эталона, отражающее степень устойчивости показателя с эталонной функцией принадлежности, на базе которой рассчитывается коэффициент согласованности. Примем устойчивость эталона за единицу.

Это позволяет нам ввести коэффициент устойчивости \((u(s))\).

Так как показатель, характеризующийся абсолютной устойчивостью к изменению внешних параметров, и показатель, абсолютно неустойчивый к изменению внешних параметров, имеют одинаковую (нулевую) степень согласованности с эталонной функцией принадлежности (и в том, и в другом случаях площадь пересечения графика функции принадлежности показателя и функции принадлежности эталона равняется нулю, \(T_p = 0\)), то при определении коэффициентов устойчивости на основе коэффициента согласованности необходимо разделить все возможные ситуации на три: 1) показатель обладает большей устойчивостью, чем эталон (см. рис. 8.1); 2) функции принадлежности показателя и эталона совпадают; 3) показатель обладает меньшей устойчивостью, чем эталон.

Рисунок 8.1 - Варианты устойчивости показателя по сравнению с устойчивостью эталона
При построении формулы для расчета коэффициента устойчивости необходимо исходить из того, что данный коэффициент должен принимать нулевое значение для абсолютно неустойчивого показателя и постепенно возрастать при увеличении степени устойчивости. Такое понимание коэффициента устойчивости позволяет предложить следующую формулу для его расчета:

\[
\begin{aligned}
 u(s) &= \begin{cases}
 \frac{1}{s}, & \text{если эталон менее устойчив,} \\
 s, & \text{если эталон более устойчив,} \\
 1, & \text{если устойчивость совпадает с эталонной.}
 \end{cases}
\end{aligned}
\]

В таком случае устойчивость эталона равняется 1, а сам коэффициент устойчивости показывает, во сколько раз устойчивость анализируемого показателя превышает устойчивость эталона.

Коэффициент устойчивости, рассчитанный по приведенной формуле и умноженный на 100%, позволяет сравнивать в процентном отношении устойчивость анализируемого показателя с устойчивостью эталона. Значение данного коэффициента меньше единицы показывает, что анализируемый показатель менее устойчив по сравнению с эталонным, а положительное – что он более устойчив.

Учитывая, что абсолютно устойчивый показатель в соответствии с данной формулой будет иметь устойчивость, равную плюс бесконечности, можно предложить следующую модифицированную формулу, ограничивающую максимальное значение коэффициента устойчивости:

\[
\begin{aligned}
 \tilde{u}(s) &= \begin{cases}
 1 - s, & \text{если эталон менее устойчив,} \\
 2 - s, & \text{если эталон более устойчив,} \\
 1, & \text{если устойчивость совпадает с эталонной.}
 \end{cases}
\end{aligned}
\]

Как уже говорилось выше, для обеспечения сопоставимости между собой коэффициентов устойчивости, рассчитанных для разных показателей, необходимо использовать во всех случаях одинаковую эталонную функцию принадлежности.

Предложенный подход позволяет сравнивать между собой различные показатели по степени их устойчивости к изменению внешних параметров. При этом коэффициенты устойчивости могут рассчитываться по отношению к любому из выбранных показателей. Кроме того, представленный подход позволяет при анализе устойчивости нескольких показателей осуществлять переход от использования в качестве эталона одного показателя к использованию другого с соответствующей корректировкой на коэффициенты устойчивости.
8.3. Статистический анализ асимптотических свойств устойчивости

Формирование статистической базы

В качестве статистической базы взяты результаты прогнозных расчетов по динамической межотраслевой модели с нечеткими параметрами (см. раздел 7). Нечетким прогнозируемым показателем был выбран темп роста валового выпуска экономики России в целом за период 2007-2012 гг. Была проведена серия экспериментальных прогнозных расчетов, в которой нечетко задавались экзогенные вводы в действие основных фондов.

Если обозначить через \(D \) набор экзогенных параметров межотраслевой модели, по которой выполнялись расчеты, а оператор выполнения расчетов через \(F \), то процедура расчета по этой модели может быть записана формулой (8.1).

В расчетах базовые значения параметров \(jD \) заменялись симметричными треугольными числами \(\tilde{D}_j \), в которых носитель \(q_j \) составлял заданную долю \(r \) от базового значения \(D_j \) этого параметра. Таким образом, для каждого параметра \(D_j \), который заменялся треугольным числом, было выполнено равенство \(q_j = r \cdot D_j \). В качестве эталонного расчетного темпа выбиралось симметричное треугольное число \(x \), с носителем \(s \), центром которого является наиболее правдоподобное значение темпа. После прогнозного расчета для темпа роста валового выпуска вычислялась величина

\[
T(r,s) = T_1(x,F(\tilde{D})).
\]

Здесь через \(\tilde{D} \) обозначен набор экзогенных параметров \(D \) межотраслевой модели \(x = F(D) \), в котором некоторые компоненты задаются в виде треугольных чисел.

В расчетах задавались разные значения \(r \) и \(s \). В результате была получена следующая таблица 8.1.

Таблица 8.1. - Значения \(T(r,s) \) надежности согласования нечеткого темпа роста валового выпуска с нечетким заданием прогнозируемых вводов основных фондов.

<table>
<thead>
<tr>
<th>(r)</th>
<th>(s = 0,0065)</th>
<th>(s = 0,00423)</th>
<th>(s = 0,00275)</th>
<th>(s = 0,00179)</th>
<th>(s = 0,00116)</th>
<th>(s = 0,00075)</th>
<th>(s = 0,00049)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,06)</td>
<td>69,28%</td>
<td>51,97%</td>
<td>38,12%</td>
<td>29,62%</td>
<td>23,59%</td>
<td>17,53%</td>
<td>11,22%</td>
</tr>
<tr>
<td>(0,07)</td>
<td>55,73%</td>
<td>40,43%</td>
<td>29,20%</td>
<td>21,28%</td>
<td>15,25%</td>
<td>11,05%</td>
<td>8,66%</td>
</tr>
<tr>
<td>(0,08)</td>
<td>55,25%</td>
<td>38,76%</td>
<td>27,68%</td>
<td>18,32%</td>
<td>12,20%</td>
<td>8,11%</td>
<td>5,82%</td>
</tr>
<tr>
<td>(0,09)</td>
<td>48,46%</td>
<td>34,04%</td>
<td>23,37%</td>
<td>14,69%</td>
<td>9,26%</td>
<td>6,40%</td>
<td>4,09%</td>
</tr>
<tr>
<td>(0,10)</td>
<td>44,54%</td>
<td>31,11%</td>
<td>20,61%</td>
<td>12,97%</td>
<td>8,30%</td>
<td>5,12%</td>
<td>3,80%</td>
</tr>
<tr>
<td>(0,11)</td>
<td>42,95%</td>
<td>32,20%</td>
<td>21,67%</td>
<td>13,98%</td>
<td>8,26%</td>
<td>5,42%</td>
<td>3,99%</td>
</tr>
<tr>
<td>(0,12)</td>
<td>37,85%</td>
<td>24,31%</td>
<td>16,73%</td>
<td>13,20%</td>
<td>9,58%</td>
<td>5,97%</td>
<td>3,96%</td>
</tr>
<tr>
<td>(0,13)</td>
<td>33,93%</td>
<td>24,30%</td>
<td>18,45%</td>
<td>12,79%</td>
<td>8,03%</td>
<td>5,14%</td>
<td>3,38%</td>
</tr>
<tr>
<td>(0,14)</td>
<td>36,07%</td>
<td>25,24%</td>
<td>16,88%</td>
<td>11,66%</td>
<td>8,79%</td>
<td>7,07%</td>
<td>5,40%</td>
</tr>
<tr>
<td>(0,15)</td>
<td>30,05%</td>
<td>19,91%</td>
<td>12,67%</td>
<td>8,03%</td>
<td>4,90%</td>
<td>2,36%</td>
<td>1,39%</td>
</tr>
<tr>
<td>(0,16)</td>
<td>28,71%</td>
<td>21,03%</td>
<td>14,56%</td>
<td>9,37%</td>
<td>6,76%</td>
<td>4,54%</td>
<td>3,05%</td>
</tr>
<tr>
<td>(0,17)</td>
<td>28,80%</td>
<td>20,46%</td>
<td>13,40%</td>
<td>8,02%</td>
<td>4,56%</td>
<td>3,18%</td>
<td>2,23%</td>
</tr>
<tr>
<td>(0,18)</td>
<td>28,29%</td>
<td>19,06%</td>
<td>12,32%</td>
<td>8,66%</td>
<td>5,43%</td>
<td>3,30%</td>
<td>2,38%</td>
</tr>
</tbody>
</table>
Методика построения функции $T(r,s)$

Методика исследования заключалась в следующем. На первом этапе проводилась гипотеза постоянства эластичности надежности $T(r,s)$ по параметру s. В результате вычисления статистики $H_1 = \frac{\Delta T \cdot s}{T \cdot \Delta s}$ по таблице 8.1 была получена таблица 8.2.

<table>
<thead>
<tr>
<th>r</th>
<th>$s = 0.00065$</th>
<th>$s = 0.000423$</th>
<th>$s = 0.00275$</th>
<th>$s = 0.00179$</th>
<th>$s = 0.00116$</th>
<th>$s = 0.00075$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>7.13700</td>
<td>0.761808</td>
<td>0.636659</td>
<td>0.581554</td>
<td>0.733713</td>
<td>1.029275</td>
</tr>
<tr>
<td>0.07</td>
<td>7.84403</td>
<td>0.793571</td>
<td>0.775048</td>
<td>0.809348</td>
<td>0.787338</td>
<td>0.618024</td>
</tr>
<tr>
<td>0.08</td>
<td>8.42589</td>
<td>0.816747</td>
<td>0.965825</td>
<td>0.954513</td>
<td>0.958393</td>
<td>0.807053</td>
</tr>
<tr>
<td>0.09</td>
<td>8.50450</td>
<td>0.894584</td>
<td>1.060785</td>
<td>1.056992</td>
<td>0.881976</td>
<td>1.033070</td>
</tr>
<tr>
<td>0.10</td>
<td>8.61470</td>
<td>0.964273</td>
<td>1.059720</td>
<td>1.027348</td>
<td>1.094003</td>
<td>0.739099</td>
</tr>
<tr>
<td>0.11</td>
<td>7.15269</td>
<td>0.934368</td>
<td>1.013510</td>
<td>1.169272</td>
<td>0.982360</td>
<td>0.752572</td>
</tr>
<tr>
<td>0.12</td>
<td>1.021713</td>
<td>0.891552</td>
<td>0.602847</td>
<td>0.782779</td>
<td>1.075396</td>
<td>0.962119</td>
</tr>
<tr>
<td>0.13</td>
<td>8.10558</td>
<td>0.688627</td>
<td>0.875928</td>
<td>1.063691</td>
<td>1.027064</td>
<td>0.978123</td>
</tr>
<tr>
<td>0.14</td>
<td>8.57668</td>
<td>0.946204</td>
<td>0.883102</td>
<td>0.704169</td>
<td>0.559826</td>
<td>0.673057</td>
</tr>
<tr>
<td>0.15</td>
<td>9.64103</td>
<td>1.039348</td>
<td>1.046638</td>
<td>1.113781</td>
<td>1.482644</td>
<td>1.166482</td>
</tr>
<tr>
<td>0.16</td>
<td>7.64645</td>
<td>0.879305</td>
<td>1.018216</td>
<td>0.794274</td>
<td>0.937707</td>
<td>0.938106</td>
</tr>
<tr>
<td>0.17</td>
<td>8.27133</td>
<td>0.985639</td>
<td>1.141722</td>
<td>1.234548</td>
<td>0.861621</td>
<td>0.856281</td>
</tr>
<tr>
<td>0.18</td>
<td>9.31775</td>
<td>1.009721</td>
<td>0.850398</td>
<td>1.063393</td>
<td>1.122872</td>
<td>0.792226</td>
</tr>
<tr>
<td>0.19</td>
<td>1.017873</td>
<td>0.897341</td>
<td>0.858080</td>
<td>1.104324</td>
<td>0.795519</td>
<td>0.967741</td>
</tr>
</tbody>
</table>

Статистика H_1 имеет следующие характеристики

$$H_1 = 0.908872, \quad S_{H_1}^2 = 0.02573$$

Проверка на стационарность. По критерию Дики-Фуллера t-статистика и z-статистика подтверждают стационарность на 99%-м уровне значимости. Нормальность распределения подтверждается по критерию Колмогорова-Смирнова на 95%-м уровне значимости.

<table>
<thead>
<tr>
<th>Величина лага</th>
<th>$L = 1$</th>
<th>$L = 2$</th>
<th>$L = 3$</th>
<th>$L = 4$</th>
<th>$L = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Значение автокорреляционной функции</td>
<td>-0.1078322994</td>
<td>0.0536724513</td>
<td>-0.1108745688</td>
<td>-0.1216361752</td>
<td>-0.0274476362</td>
</tr>
<tr>
<td>Значение S.E. статистики</td>
<td>0.1091089 [0.3230]</td>
<td>0.1103703 [0.6268]</td>
<td>0.1106806 [0.3165]</td>
<td>0.1119951 [0.2774]</td>
<td>0.1135569 [0.8090]</td>
</tr>
<tr>
<td>Значение статистики Бокса-Пирса</td>
<td>0.976736 [0.3230]</td>
<td>1.218717 [0.5437]</td>
<td>2.251343 [0.5219]</td>
<td>3.494154 [0.4788]</td>
<td>3.557437 [0.6147]</td>
</tr>
</tbody>
</table>

Результаты расчетов, содержащиеся в таблице 8.3, подтверждают отсутствие автокорреляции в выборке H_1.

Итоговым выводом из проведенного статистического исследования является утверждение, что выборка статистики H_1 из таблицы 8.2 представляет собой Гауссовский белый шум.
Это обосновывает справедливость равенства
\[
\frac{\partial \ln \bar{T}(r,s)}{\partial \ln s} = 0.908873, \tag{8.4}
\]
где через \(\bar{T}(r,s) \) обозначено математическое ожидание случайной величины \(T(r,s) \).

Решив уравнение в частных производных (8.4), найдем
\[
\bar{T}(r,s) = T_o(r) \cdot s^{0.908873}. \tag{8.5}
\]

Из таблицы 8.1 с учетом формулы (8.5) теперь определяем значения функции \(T_o(r) \).

Таблица 8.4. Значения функции \(T_o(r) \).

<table>
<thead>
<tr>
<th>Максимальная ошибка</th>
<th>(T_o(r))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r = 0.06)</td>
<td>131.6954</td>
</tr>
<tr>
<td>(r = 0.07)</td>
<td>114.1469</td>
</tr>
<tr>
<td>(r = 0.08)</td>
<td>98.81548</td>
</tr>
<tr>
<td>(r = 0.09)</td>
<td>81.9599</td>
</tr>
<tr>
<td>(r = 0.10)</td>
<td>72.56045</td>
</tr>
<tr>
<td>(r = 0.11)</td>
<td>68.75442</td>
</tr>
<tr>
<td>(r = 0.12)</td>
<td>61.73261</td>
</tr>
<tr>
<td>(r = 0.13)</td>
<td>57.32197</td>
</tr>
<tr>
<td>(r = 0.14)</td>
<td>50.5824</td>
</tr>
<tr>
<td>(r = 0.15)</td>
<td>46.98074</td>
</tr>
<tr>
<td>(r = 0.16)</td>
<td>43.00124</td>
</tr>
<tr>
<td>(r = 0.17)</td>
<td>42.66088</td>
</tr>
<tr>
<td>(r = 0.18)</td>
<td>41.43087</td>
</tr>
<tr>
<td>(r = 0.19)</td>
<td>40.68991</td>
</tr>
</tbody>
</table>

Аналогичная проверка функции \(T_o(r) \) показывает, что справедливо равенство
\[
T_o(r) = H \cdot r^{-0.8741}. \tag{8.6}
\]

Для статистики \(H \) в этом случае имеем следующую выборку:
Таблица 8.5.

<table>
<thead>
<tr>
<th>Максимальная ошибка</th>
<th>(H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r = 0.06)</td>
<td>11.26048</td>
</tr>
<tr>
<td>(r = 0.07)</td>
<td>11.16782</td>
</tr>
<tr>
<td>(r = 0.08)</td>
<td>10.86475</td>
</tr>
<tr>
<td>(r = 0.09)</td>
<td>9.895588</td>
</tr>
<tr>
<td>(r = 0.10)</td>
<td>9.696242</td>
</tr>
<tr>
<td>(r = 0.11)</td>
<td>9.985856</td>
</tr>
<tr>
<td>(r = 0.12)</td>
<td>9.674536</td>
</tr>
<tr>
<td>(r = 0.13)</td>
<td>9.634342</td>
</tr>
<tr>
<td>(r = 0.14)</td>
<td>9.070535</td>
</tr>
<tr>
<td>(r = 0.15)</td>
<td>8.948373</td>
</tr>
<tr>
<td>(r = 0.16)</td>
<td>8.665727</td>
</tr>
<tr>
<td>(r = 0.17)</td>
<td>9.065002</td>
</tr>
<tr>
<td>(r = 0.18)</td>
<td>9.254657</td>
</tr>
</tbody>
</table>

со средним значением \(H = 9.783 \). Таким образом, окончательно получаем зависимость ожидаемой надежности согласования \(\bar{T}(r,s) \) от параметров \(r \) и \(s \) в следующем виде:
\[
\bar{T}(r,s) = 9.783 \cdot r^{-0.8741} \cdot s^{0.908873}. \tag{8.6}
\]
Выведенная формула (8.6) характеризует надежность согласования наиболее правдоподобного темпа роста валового выпуска, описанного треугольным симметричным числом с носителем s, и максимальной ошибки прогнозируемых вводов $r\%$ от абсолютной величины вводов в предположении, что ошибка описывается треугольным числом с носителем r из интервала $0.06 \leq r \leq 0.18$, а размер носителя s удовлетворяет условию $0 < s \leq 0.0065$.

8.4. Анализ устойчивости траекторий отраслевых валовых выпусков к изменениям входных параметров динамической модели межотраслевого баланса с нечеткими параметрами

Анализ устойчивости траекторий развития отраслей экономики России основывается на прогнозных расчетах, проведенных по ДММБ с нечеткими параметрами, на период 2008-2012 гг. и основан на анализе функций принадлежности динамики отраслевых валовых выпусков. Результаты расчетов по ДММБ с нечеткими параметрами описаны выше в разделе 7.

За базу для расчетов взят вариант развития экономики России, предполагающий существенную активизацию инвестиционной деятельности и достижение в 2008-2012 гг. среднегодовых темпов роста реального ВВП России в 7,5%, что соответствует задаче удвоения реального ВВП за 10 летний период. В качестве варьируемого показателя, порождающего неопределенность в развитии экономики России, выбран темп роста величины ввода в действие основных производственных фондов, диапазон варьирования которого последовательно возрастает в рассматриваемой перспективе, достигая $\pm 20\%$ от его детерминированной оценки, полученной по детерминированной ДММБ, в 2012 году. Результаты имитационных расчетов по ДММБ с нечеткими параметрами в рамках сделанных предположений сведены в таблицу 8.6. Также для иллюстрации на рисунке 8.2 представлены графики функций принадлежности темпов роста в 2012 году по отношению к 2007 году валового выпуска экономики России в целом, темпов роста валового выпуска нефтедобывающей промышленности, как наиболее устойчивого показателя, согласно расчетам, и темп роста валового выпуска легкой промышленности, как наименее устойчивого показателя.

Полученные результаты позволяют судить о достаточно высокой состоятельности полученных максимально правдоподобных оценок. Действительно, отклонения детерминированной оценки темпов роста отраслевых валовых выпусков продукции в 2012 году по отношению к 2007 году составляют от 0,1 п.п. для нефтедобычи и цветной металлургии до 4,4 п.п. для легкой промышленности, имеющей самую низкую степень согласованности с эталоном и самый низкий уровень максимального значения степени правдоподобия. Заметим, что рассматриваемые отрасли имеют существенно различающиеся степени отклонений
максимального и минимального значений темпов роста валового выпуска от максимально правдоподобной оценки, что позволяет предварительно судить о разной степени устойчивости траекторий валовых выпусков разных отраслей экономики России к изменениям объемов ввода в действие основных производственных фондов.
Таблица 8.6. Характеристика функций принадлежности отраслевых валовых выпусков в 2007-2012 гг.

<table>
<thead>
<tr>
<th>Отрасль</th>
<th>Коэффициент согласованности, %</th>
<th>Максимальный коэффициент правдоподобия</th>
<th>Оценка вероятности, %</th>
<th>Характеристика функции принадлежности</th>
<th>Отклонение максимального правдоподобия от (в п.п.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>наименьшее правдоподобное значение</td>
<td>минимальное значение</td>
</tr>
<tr>
<td>Валовой выпуск в целом по экономике</td>
<td>72,5%</td>
<td>143,6%</td>
<td>143,2%</td>
<td>118,9%</td>
<td>167,8%</td>
</tr>
<tr>
<td>Первое подразделение</td>
<td>87,2%</td>
<td>144,4%</td>
<td>144,6%</td>
<td>117,3%</td>
<td>169,2%</td>
</tr>
<tr>
<td>Второе подразделение</td>
<td>53,3%</td>
<td>142,0%</td>
<td>140,8%</td>
<td>100,3%</td>
<td>175,4%</td>
</tr>
<tr>
<td>1. Производство машин и оборудования</td>
<td>49,5%</td>
<td>213,0%</td>
<td>215,4%</td>
<td>155,3%</td>
<td>260,3%</td>
</tr>
<tr>
<td>2. Строительство зданий и сооружений</td>
<td>64,3%</td>
<td>177,6%</td>
<td>179,2%</td>
<td>135,4%</td>
<td>217,2%</td>
</tr>
<tr>
<td>3. Электроэнергетика</td>
<td>76,2%</td>
<td>117,8%</td>
<td>117,4%</td>
<td>92,3%</td>
<td>141,2%</td>
</tr>
<tr>
<td>4. Нефтяная промышленность</td>
<td>79,6%</td>
<td>127,0%</td>
<td>126,9%</td>
<td>113,1%</td>
<td>140,6%</td>
</tr>
<tr>
<td>5. Нефтепереработка</td>
<td>89,9%</td>
<td>120,4%</td>
<td>120,1%</td>
<td>99,4%</td>
<td>140,7%</td>
</tr>
<tr>
<td>6. Газовая промышленность</td>
<td>93,9%</td>
<td>115,7%</td>
<td>115,5%</td>
<td>98,0%</td>
<td>132,5%</td>
</tr>
<tr>
<td>7. Прочие отрасли топливной промышленности</td>
<td>92,2%</td>
<td>136,2%</td>
<td>136,0%</td>
<td>115,8%</td>
<td>155,8%</td>
</tr>
<tr>
<td>8. Черная металлургия</td>
<td>93,6%</td>
<td>132,1%</td>
<td>132,5%</td>
<td>104,5%</td>
<td>156,2%</td>
</tr>
<tr>
<td>9. Цветная металлургия</td>
<td>86,1%</td>
<td>121,1%</td>
<td>121,2%</td>
<td>102,6%</td>
<td>138,0%</td>
</tr>
<tr>
<td>10. Химическая и нефтехимическая промышленность</td>
<td>62,4%</td>
<td>134,8%</td>
<td>134,2%</td>
<td>104,2%</td>
<td>162,4%</td>
</tr>
<tr>
<td>11. Металлообработка</td>
<td>55,4%</td>
<td>135,8%</td>
<td>135,2%</td>
<td>104,0%</td>
<td>166,4%</td>
</tr>
<tr>
<td>12. Лесная, деревообрабатывающая и целлюлозно-бумажная промышленность</td>
<td>73,1%</td>
<td>148,2%</td>
<td>147,7%</td>
<td>122,5%</td>
<td>172,9%</td>
</tr>
<tr>
<td>13. Промышленность строительных материалов</td>
<td>78,6%</td>
<td>155,5%</td>
<td>156,1%</td>
<td>121,7%</td>
<td>186,0%</td>
</tr>
<tr>
<td>14. Легкая промышленность</td>
<td>13,0%</td>
<td>111,9%</td>
<td>107,5%</td>
<td>5,6%</td>
<td>219,4%</td>
</tr>
<tr>
<td>15. Пищевая промышленность</td>
<td>60,5%</td>
<td>113,3%</td>
<td>112,3%</td>
<td>77,1%</td>
<td>142,8%</td>
</tr>
<tr>
<td>16. Прочие отрасли промышленности</td>
<td>72,2%</td>
<td>151,0%</td>
<td>150,3%</td>
<td>121,9%</td>
<td>175,8%</td>
</tr>
<tr>
<td>17. Строительство (нефондосоздающее)</td>
<td>64,4%</td>
<td>155,7%</td>
<td>155,1%</td>
<td>125,7%</td>
<td>182,7%</td>
</tr>
<tr>
<td>18. Сельское и лесное хозяйство</td>
<td>66,1%</td>
<td>116,7%</td>
<td>115,8%</td>
<td>83,4%</td>
<td>144,0%</td>
</tr>
<tr>
<td>19. Транспорт и связь</td>
<td>68,6%</td>
<td>137,1%</td>
<td>136,4%</td>
<td>106,5%</td>
<td>163,5%</td>
</tr>
<tr>
<td>20. Торгово-посреднические услуги</td>
<td>44,3%</td>
<td>226,6%</td>
<td>225,2%</td>
<td>179,1%</td>
<td>265,6%</td>
</tr>
<tr>
<td>21. Прочие отрасли материального производства</td>
<td>59,3%</td>
<td>155,9%</td>
<td>155,1%</td>
<td>122,1%</td>
<td>185,3%</td>
</tr>
<tr>
<td>22. Отрасли нематериальных услуг</td>
<td>60,5%</td>
<td>142,3%</td>
<td>141,3%</td>
<td>106,1%</td>
<td>172,0%</td>
</tr>
<tr>
<td>Эталонное распределение</td>
<td>100,0%</td>
<td>139,8%</td>
<td>139,8%</td>
<td>104,2%</td>
<td>173,9%</td>
</tr>
</tbody>
</table>

Источник: расчеты по ДММБ с нечеткими параметрами
Перейдем к сравнительному анализу устойчивости траекторий валового выпуска основных отраслей национальной экономики России на прогнозную перспективу (см.: Таблица 8.7).

В целях анализа устойчивости траекторий валовых выпусков отраслей экономики России для каждой отрасли был рассчитан показатель средневзвешенного по правдоподобию отклонения:

$$s_j^r = \sqrt{\frac{\sum_{i=1}^{N} P_{ji} \cdot (y_{ji} - \bar{y}_j)^2}{\sum_{i=1}^{N} P_{ji}}}$$

где \(j = 1, \ldots, n \) – индекс отрасли; \(i = 1, \ldots, N \) – номер эксперимента, проведенного для построения функции принадлежности; \(P_{ji} \) – степень правдоподобности валового выпуска отрасли \(j \), полученного в эксперименте \(i \); \(y_{ji} \) – значение темпа роста валового выпуска отрасли \(j \), полученного в эксперименте \(i \); \(\bar{y}_j^r \) - средневзвешенный по правдоподобию темп роста валового выпуска отрасли \(j \).
Средневзвешенное по правдоподобию отклонение показывает, насколько значение рассматриваемого показателя может отличаться в среднем по правдоподобию от его максимально правдоподобной оценки и выступает аналогом стандартного отклонения, используемого в аппарате математической статистики, а следовательно может быть использовано при характеристики степени устойчивости показателей. Для обеспечения сопоставимости результатов, полученных для оценки устойчивости отдельных показателей необходимо скорректировать показатель средневзвешенного по правдоподобию отклонения на наиболее правдоподобное значение данного показателя.

Анализ расчетных данных, содержащихся в таблице 8.7, позволяет сделать следующие выводы.

Траектория валового выпуска экономики России в целом обладает достаточно высокой степенью устойчивости к вариации вводов в действие основных производственных фондов (темп роста в 2012 году по отношению к 2007 году составляет 143,6%, коэффициент устойчивости по отношению к эталону – 72,5%, а отношение средневзвешенного по степени правдоподобия отклонения к темпу роста – 5,9%).

Траектория валового выпуска первого подразделения в рассматриваемом периоде (темп роста в 2012 году по отношению к 2007 году составляет 144,4%, коэффициент устойчивости по отношению к эталону – 87,2%, а отношение средневзвешенного по степени правдоподобия отклонения к темпу роста – 4,8%) оказывается более устойчивой к изменению вводов в действие основных производственных фондов, а траектория продукции второго подразделения (темп роста в 2012 году по отношению к 2007 году составляет 140,8%, коэффициент устойчивости по отношению к эталону – 53,3%, а отношение средневзвешенного по степени правдоподобия отклонения к темпу роста – 9,4%) – существенно менее устойчивой.

Среди отраслей экономики России наиболее устойчивой траекторией развития обладает нефтеносная промышленность (темп роста в 2012 году по отношению к 2007 году составляет 127,0%, коэффициент устойчивости по отношению к эталону – 125,7%, а отношение средневзвешенного по степени правдоподобия отклонения к темпу роста – 2,8%), наименее устойчивой траекторией характеризуется легкая промышленность (темп роста в 2012 году по отношению к 2007 году составляет 107,5%, коэффициент устойчивости по отношению к эталону – 13,0%, а отношение средневзвешенного по степени правдоподобия отклонения к темпу роста – 69,1%).
Таблица 8.7.
Характеристика устойчивости валовых выпусков отраслей экономики России в 2007-2012 гг.

<table>
<thead>
<tr>
<th>Отрасль</th>
<th>Валовой выпуск в целом по экономике</th>
<th>Первое подразделение</th>
<th>Второе подразделение</th>
<th>Устойчивость по отношению к эталону</th>
<th>Устойчивость по отношению к валовому выпуску</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>средневзвешенное по правдоподобию</td>
<td>отклонение темпа роста / темп роста</td>
<td></td>
<td>средневзвешенное по правдоподобию</td>
<td>отклонение темпа роста / темп роста</td>
</tr>
<tr>
<td></td>
<td>8,5%</td>
<td>5,9%</td>
<td>72,5%</td>
<td>-27,5%</td>
<td>100,0%</td>
</tr>
<tr>
<td>Валовой выпуск в целом по экономике</td>
<td>6,9%</td>
<td>4,8%</td>
<td>87,2%</td>
<td>-12,8%</td>
<td>120,3%</td>
</tr>
<tr>
<td>Первое подразделение</td>
<td>13,3%</td>
<td>9,4%</td>
<td>53,3%</td>
<td>-46,7%</td>
<td>73,6%</td>
</tr>
<tr>
<td>Второе подразделение</td>
<td>17,4%</td>
<td>8,2%</td>
<td>49,5%</td>
<td>-50,5%</td>
<td>68,3%</td>
</tr>
<tr>
<td>1. Производство машин и оборудования</td>
<td>11,8%</td>
<td>6,6%</td>
<td>64,3%</td>
<td>-35,7%</td>
<td>88,7%</td>
</tr>
<tr>
<td>2. Строительство зданий и сооружений</td>
<td>6,0%</td>
<td>4,4%</td>
<td>92,2%</td>
<td>-7,8%</td>
<td>127,3%</td>
</tr>
<tr>
<td>3. Электроэнергетика</td>
<td>8,0%</td>
<td>6,8%</td>
<td>76,2%</td>
<td>-23,8%</td>
<td>105,1%</td>
</tr>
<tr>
<td>4. Нефтедобыча</td>
<td>3,5%</td>
<td>2,8%</td>
<td>125,7%</td>
<td>25,7%</td>
<td>173,5%</td>
</tr>
<tr>
<td>5. Нефтепереработка</td>
<td>6,3%</td>
<td>5,3%</td>
<td>89,9%</td>
<td>-10,1%</td>
<td>124,1%</td>
</tr>
<tr>
<td>6. Газовая промышленность</td>
<td>4,7%</td>
<td>4,1%</td>
<td>106,5%</td>
<td>6,5%</td>
<td>147,0%</td>
</tr>
<tr>
<td>7. Прочие отрасли топливной промышленности</td>
<td>6,0%</td>
<td>4,4%</td>
<td>92,2%</td>
<td>-7,8%</td>
<td>127,3%</td>
</tr>
<tr>
<td>8. Черная металлургия</td>
<td>6,3%</td>
<td>4,8%</td>
<td>93,6%</td>
<td>-6,4%</td>
<td>129,1%</td>
</tr>
<tr>
<td>9. Цветная металлургия</td>
<td>4,1%</td>
<td>3,4%</td>
<td>116,1%</td>
<td>16,1%</td>
<td>160,2%</td>
</tr>
<tr>
<td>10. Химическая и нефтехимическая промышленность</td>
<td>10,3%</td>
<td>7,6%</td>
<td>62,4%</td>
<td>-37,6%</td>
<td>86,2%</td>
</tr>
<tr>
<td>11. Металлообработка</td>
<td>12,1%</td>
<td>8,9%</td>
<td>55,4%</td>
<td>-44,6%</td>
<td>76,5%</td>
</tr>
<tr>
<td>12. Лесная, деревообрабатывающая и целлюлозно-бумажная промышленность</td>
<td>8,5%</td>
<td>5,7%</td>
<td>73,1%</td>
<td>-26,9%</td>
<td>100,8%</td>
</tr>
<tr>
<td>13. Промышленность строительных материалов</td>
<td>8,4%</td>
<td>5,4%</td>
<td>78,6%</td>
<td>-21,4%</td>
<td>108,5%</td>
</tr>
<tr>
<td>14. Легкая промышленность</td>
<td>77,3%</td>
<td>69,1%</td>
<td>13,0%</td>
<td>-87,0%</td>
<td>17,9%</td>
</tr>
<tr>
<td>15. Пищевая промышленность</td>
<td>11,1%</td>
<td>9,8%</td>
<td>60,5%</td>
<td>-39,5%</td>
<td>83,5%</td>
</tr>
<tr>
<td>16. Прочие отрасли промышленности</td>
<td>8,7%</td>
<td>5,8%</td>
<td>72,2%</td>
<td>-27,8%</td>
<td>99,6%</td>
</tr>
<tr>
<td>17. Строительство (нефндооохранное)</td>
<td>10,0%</td>
<td>6,4%</td>
<td>64,4%</td>
<td>-35,6%</td>
<td>88,9%</td>
</tr>
<tr>
<td>18. Сельское и лесное хозяйство</td>
<td>9,9%</td>
<td>8,5%</td>
<td>66,1%</td>
<td>-33,9%</td>
<td>91,2%</td>
</tr>
<tr>
<td>19. Транспорт и связь</td>
<td>9,4%</td>
<td>6,9%</td>
<td>68,6%</td>
<td>-31,4%</td>
<td>94,7%</td>
</tr>
<tr>
<td>20. Торгово-посреднические услуги</td>
<td>16,4%</td>
<td>7,2%</td>
<td>44,3%</td>
<td>-55,7%</td>
<td>61,2%</td>
</tr>
<tr>
<td>21. Прочие отрасли материального производства</td>
<td>11,1%</td>
<td>7,1%</td>
<td>59,3%</td>
<td>-40,7%</td>
<td>81,9%</td>
</tr>
<tr>
<td>22. Отрасли нематериальных услуг</td>
<td>11,2%</td>
<td>7,9%</td>
<td>60,5%</td>
<td>-39,5%</td>
<td>83,5%</td>
</tr>
<tr>
<td>Эталонное распределение</td>
<td>5,4%</td>
<td>3,9%</td>
<td>100,0%</td>
<td>0,0%</td>
<td>138,0%</td>
</tr>
</tbody>
</table>

Источник: расчеты по ДММБ с нечеткими параметрами
Предложенный подход позволяет, в частности, сравнивать устойчивость траекторий различных показателей между собой. Так, из 22 учитываемых отраслей, 9 обладают более высокой степенью устойчивости к изменению вводов в действие основных производственных фондов по отношению к валовому выпуску экономики России в целом. Это электроэнергетика (коэффициент устойчивости по отношению к валовому выпуску составляет 105,1%), нефтедобыча (173,5%), нефтепереработка (124,1%), газовая промышленность (147,0%), прочие отрасли топливной промышленности (127,3%), черная металлургия (129,1%), цветная металлургия (160,2%), лесная, деревообрабатывающая и целлюлозно-бумажная промышленность (100,8%), промышленность строительных материалов (108,5%). Отметим, что все перечисленные отрасли являются отраслями промышленности, характеризующимися высокой капиталоемкостью производства и низкой степенью выбытия основных производственных фондов. Указанное обстоятельство объясняет высокую устойчивость траекторий валовых выпусков данных отраслей к изменению вводов в действие основных производственных фондов.

Вместе с тем среди отраслей промышленности имеются и отрасли, обладающие менее устойчивыми траекториями развития. Это производство машин и оборудования (коэффициент устойчивости по отношению к валовому выпуску равен 68,3%), химическая и нефтехимическая промышленность (86,2%), металлообработка (76,5%), легкая промышленность (17,9%), пищевая промышленность (83,5%). Также более низкой устойчивостью траекторий развития к изменению вводов в действие основных производственных фондов характеризуются строительство (88,7%), сельское и лесное хозяйство (91,2%), транспорт и связь (94,7%), торгово-посреднические услуги (61,2%), прочие отрасли материального производства (81,9%), отрасли нематериальных услуг (83,5%).

Это означает, что при реализации стратегических планов развития экономики России особое внимание должно уделяться стимулированию инвестиционной и деловой активности в вышеперечисленных отраслях (особенно в легкой промышленности, торгово-посреднической деятельности, производстве машин и оборудования и металлообработке, обладающих наименьшей устойчивостью), так как ее снижение будет оказывать значительное негативное влияние на траектории их развития и через межотраслевые цепочки негативно сказываться на возможностях развития других отраслей экономики России, замедляя тем самым экономический рост в целом.
9. Нечеткий анализ неопределенности в моделировании эколого-экономических процессов в России

В настоящее время большинство отечественных и зарубежных исследователей полагают наличие неопределенности (случайности, стохастичности) одной из важнейших характеристик условий, в которых протекают эколого-экономические процессы. Под неопределенностью понимается невозможность однозначного определения будущих значений выходных показателей системы на основе информации об их предыстории и значениях входных показателей.

В работе В.И. Данилова-Данильяна и И.Л. Храновича [16] выделяются следующие факторы, или причины, неопределенности: природные, конъюнктурно-экономические (скачки цен, резкие колебания спроса и др.), социальные, политические (непредвиденные изменения социальных или политических условий), технологические (например, техногенные аварии и катастрофы), научно-технические (появление принципиально новых продуктов и технологий).

В данном разделе монографии основное внимание будет уделено факторам первой группы, носящим «природно-экологический характер». Процессы поступления и использования природных ресурсов имеют ярко выраженный стохастический характер, что приводит к риску принятия неоправданных решений о параметрах и режимах природно-ресурсных систем. К данным факторам относятся непредсказуемые изменения климатических условий, в том числе экологические катастрофы, число которых заметно участилось на планете в последнее время: землетрясения (Турция, 1999 г), цунами (Малазия, Тайланд, 2004 г), ураганы (Московский в 1998 г., ураганы Рита, Катрина в 2005 г), штормы (кораблекрушения в Азовском и Черном морях в 2007 г) и другие природные катастрофы.

Во всех вышеперечисленных шесть классов факторов тесно взаимосвязаны друг с другом. Природные факторы особенно значимы для природно-экономических и природно-технических систем: количество и качество производственных ресурсов, обстоятельства, обусловливающие величину отдельных статей затрат, необходимых для использования данных ресурсов, зависят от природных процессов. Неблагоприятная экологическая ситуация негативно сказывается на здоровье населения (т.о., снижается качество трудовых ресурсов), обостряет социальные условия и политическую ситуацию в стране. Согласно результатам исследований, проведенных World Watch Institute [24], с каждым годом количество катастроф на Земле растет, увеличиваются экономические потери и количество жертв (таблица 9.1).
Таблица 9.1. Динамика крупных стихийных бедствий в мире (число бедствий).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Более 100 пострадавших</td>
<td>89</td>
<td>98</td>
<td>95</td>
<td>138</td>
<td>162</td>
<td>205</td>
</tr>
<tr>
<td>Пострадало более 1% населения страны, потерпевшей бедствие</td>
<td>39</td>
<td>54</td>
<td>56</td>
<td>99</td>
<td>116</td>
<td>139</td>
</tr>
<tr>
<td>Потеряно более 1% валового продукта страны, потерпевшей бедствие</td>
<td>16</td>
<td>15</td>
<td>31</td>
<td>55</td>
<td>58</td>
<td>66</td>
</tr>
</tbody>
</table>

С другой стороны, наоборот, техногенные аварии наносят непоправимый ущерб окружающей природной среде (Семипалатинск, Чернобыль, комбинат по переработке отходов ядерного топлива «Маяк» в Челябинске).

Научно-технический прогресс в значительной мере направлен на уменьшение зависимости результатов хозяйственной деятельности от факторов неопределенности. Например, современные агротехнические приемы, химические и биологические средства защиты растений уменьшают зависимость урожая от капризов погоды. Использование гидроаккумулирующих станций позволяют избежать действие факторов неопределенности, порождаемых социально-экономическими (суточные колебания спроса на электроэнергию) и природными (похолодания) факторами. С другой стороны, часто новые технологии не имеют достаточное экологическое обоснование и обостряют факторы неопределенности природного характера, например, появление новых продуктов питания порождают проблему утилизации пластиковых упаковок.

Постоянное присутствие случайных факторов данного характера и их взаимовлияние приводит к необходимости их учета при моделировании развития эколого-экономических систем.

В секторе межотраслевых исследований народного хозяйства Института экономики и организации промышленного производства СО РАН (ИЭОПП СО РАН) выполняются прогнозные расчеты эколого-экономического развития России с использованием комплекса динамических моделей российской экономики КАМИН (система Комплексного Анализа Межотраслевой ИНформации) с экологическим блоком. Ниже представлена краткая схема КАМИН с блоком охраны окружающей среды (блок ООС):
В основном блоке системы КАМИН осуществляется моделирование объемов производства и инвестиционных процессов в отраслях промышленности и народного хозяйства. Помимо n традиционных отраслей народного хозяйства выделяются l элементов, представляющие собой природные ресурсы, и предполагается однозначное соответствие между каждым из этих элементов и сферой природоохранныей деятельности (охрana атмосферного воздуха, водоохранныя деятельность и т.д.). На данном этапе исследования рассматривается два природных ресурса – водные ресурсы и атмосферный воздух. Для данных сфер природоохранный деятельности в системе КАМИН моделируется процесс воспроизводства основных природоохранных фондов, процесс формирования экологических затрат. Экологический блок описывает материально-вещественные показатели экологических процессов. В зависимости от объемов выпуска продукции в традиционных отраслях народного хозяйства (X_j) с использованием отраслевых коэффициентов образования загрязнений воды и воздуха на единицу произведенной продукции определяется объем образования загрязнений непосредственно в процессе производства ($V_{обр}^{n+h}$), в зависимости от текущих затрат на предотвращение загрязнений (X_{n+h}) - объем улавливания или уничтожения загрязнений ($V_{улав}^{нагр} h$). Объем загрязнений, попадающих в окружающую природную среду без очистки ($V_{загр}^{n+p} h$) моделируется как разность между образованными в процессе производства загрязнениями и объемами их улавливания. Более подробно описание экономического и экологического блока модельного комплекса и методики формирования исходной информации представлено в [48].

Однако экологический блок в системе КАМИН строится в виде детерминированной модели. Попытки представить экономические связи в форме
функциональных математических зависимостей, предполагающих однозначное соответствие между параметрами модели, не учитывают чрезвычайно сложный, вероятностный характер эколого-экономических процессов. В частности в проводимых ранее прогнозных расчетах по моделированию влияния развития экономики России на загрязнение водных и воздушных ресурсов в краткосрочной перспективе коэффициенты образования загрязнений на единицу валового выпуска в целом по народному хозяйству и его отраслям брались неизменными на уровне базового года. Вывод о возможности применения данной гипотезы делался на основе анализа статистических показателей. Удельные показатели выбросов и сбросов загрязнений говорят об отсутствии кардинальных улучшений как природоочистных, так и производственных технологий с точки зрения их влияния на экологию. Например, коэффициент образования загрязненных сточных вод на единицу валового выпуска (ВВ) составил в 1990 году 0.8, а в 2003 году - 0.9 куб.метров на 1 тыс.рублей ВВ в ценах 2003 года, коэффициенты образования атмосферных загрязнений – соответственно 3.4 и 3.3 тонн на 1 млн. рублей ВВ в ценах 2003 года (таблица 9.2).

Таблица 9.2. Динамика удельных показателей загрязнения водных (куб. м на 1 тыс. руб, до 1998 г. на 1 млн. руб) и воздушных (тонн на 1 млн. руб, до 98 г - на 1 млрд. руб, стационарные источники) ресурсов (в ценах 2003 г).

<table>
<thead>
<tr>
<th>Год</th>
<th>Коэффициенты образования на единицу валового выпуска</th>
<th>Коэффициенты сброса и выброса на единицу ВВП</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>загрязненных сточных вод</td>
<td>атмосферных загрязнений</td>
</tr>
<tr>
<td>1980</td>
<td>0.96</td>
<td>5.71</td>
</tr>
<tr>
<td>1981</td>
<td>0.93</td>
<td>5.48</td>
</tr>
<tr>
<td>1982</td>
<td>0.89</td>
<td>5.31</td>
</tr>
<tr>
<td>1983</td>
<td>0.86</td>
<td>5.11</td>
</tr>
<tr>
<td>1984</td>
<td>0.83</td>
<td>5.07</td>
</tr>
<tr>
<td>1985</td>
<td>0.80</td>
<td>4.91</td>
</tr>
<tr>
<td>1986</td>
<td>0.74</td>
<td>4.61</td>
</tr>
<tr>
<td>1987</td>
<td>0.73</td>
<td>4.41</td>
</tr>
<tr>
<td>1988</td>
<td>0.73</td>
<td>4.07</td>
</tr>
<tr>
<td>1989</td>
<td>0.78</td>
<td>3.90</td>
</tr>
<tr>
<td>1990</td>
<td>0.77</td>
<td>3.65</td>
</tr>
<tr>
<td>1991</td>
<td>0.85</td>
<td>3.85</td>
</tr>
<tr>
<td>1992</td>
<td>0.98</td>
<td>3.96</td>
</tr>
<tr>
<td>1993</td>
<td>1.16</td>
<td>4.21</td>
</tr>
<tr>
<td>1994</td>
<td>1.34</td>
<td>4.52</td>
</tr>
<tr>
<td>1995</td>
<td>1.43</td>
<td>4.83</td>
</tr>
<tr>
<td>1996</td>
<td>1.42</td>
<td>4.80</td>
</tr>
<tr>
<td>1997</td>
<td>1.43</td>
<td>4.67</td>
</tr>
<tr>
<td>1998</td>
<td>1.43</td>
<td>4.50</td>
</tr>
<tr>
<td>Год</td>
<td>Коэффициент образования загрязнений сточных вод на 1 тыс. руб. ВВП</td>
<td>Коэффициент образования атмосферных загрязнений на 1 млн. руб. ВВП</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1999</td>
<td>1.29</td>
<td>4.41</td>
</tr>
<tr>
<td>2000</td>
<td>1.13</td>
<td>4.30</td>
</tr>
<tr>
<td>2001</td>
<td>1.05</td>
<td>3.82</td>
</tr>
<tr>
<td>2002</td>
<td>1.00</td>
<td>3.47</td>
</tr>
<tr>
<td>2003</td>
<td>0.90</td>
<td>3.27</td>
</tr>
<tr>
<td>2004</td>
<td>0.82</td>
<td>3.00</td>
</tr>
<tr>
<td>2005</td>
<td>0.75</td>
<td>2.94</td>
</tr>
<tr>
<td>2006</td>
<td>0.70</td>
<td>2.76</td>
</tr>
</tbody>
</table>

Таким образом, детерминистический подход к рассмотрению удельных коэффициентов образования загрязнений позволяет сделать вывод о стабильности данных показателей и возможности принятия ими значений базового года для выполнения прогнозных расчетов. Однако, при таком подходе нет возможности учесть в модели условия неопределенности будущего развития.

Более детальное рассмотрение динамики удельных коэффициентов (на протяжении более длительного периода времени, с начала 80-х годов) позволяет сделать вывод о наблюдаемых колебаниях данных показателей. Анализ вариации коэффициента образования загрязненных сточных вод на 1 тыс. руб. ВВП и коэффициента образования атмосферных загрязнений на 1 млн. руб. ВВП за период с 1980 по 2006 г. показывает, что эти коэффициенты существенно изменились. Так, коэффициент вариации для коэффициента образования загрязненных сточных вод составил 19.4%. Этот же показатель для коэффициента образования атмосферных загрязнений – 18.8%.

Ниже представлена динамика коэффициентов образования загрязненных сточных вод на единицу валового выпуска, характеризующая качество производственных технологий с точки зрения их влияния на окружающую природную среду, и коэффициентов сброса загрязненных сточных вод на единицу ВВП, учитывающая также и влияние природо-защитных технологий (рисунок 9.2) и аналогичные удельные коэффициенты по атмосферным загрязнениям (рисунок 9.3).
Анализ данных таблицы 9.2, рисунков 9.2 и 9.3 показывает значительное различие между минимальными и максимальными значениями рассматриваемых коэффициентов. Максимальное значение коэффициента образования атмосферных загрязнений наблюдалось в 1980 г. и было равно 5.71 тонн на 1 млн руб ВВ, а минимальное в 2006 г – 2.76 тонн на 1 млн руб ВВ в ценах 2003 года. Следовательно, максимальное значение данного показателя в рассматриваемом периоде было в два раза больше его минимального значения. Такой же разброс наблюдается между максимальным (1.43 куб. м в 1997-1998 гг) и минимальным (0.7 куб. м в 2006 г.) значениями коэффициента образования загрязненных сточных вод на 1 тыс. руб. ВВ, а также максимальным (2.29 куб. м в 1995 г) и минимальным (1.09 куб. м в 2006 г.) значениями коэффициента сброса загрязненных сточных вод на 1 тыс. руб. ВВП в ценах 2003 года. Вариация коэффициента выбросов загрязняющих атмосферу веществ несколько ниже, но и здесь четко прослеживается тенденция к сокращению данного показателя.

Исходя из полученных коэффициентов вариации, а также из сопоставления минимальных и максимальных значений рассматриваемых коэффициентов можно сделать
вывод о том, что при прогнозировании развития экономики на средне- и долгосрочную перспективу предположение об их стабильности является слишком сильным.

Факторы, связанные с изменением производственных и природоохранных технологий, структурные сдвиги в экономике приводят к тому, что значения анализируемых экологических показателей заметно изменяется в средне- и долгосрочной перспективе. Следовательно, использование данных показателей при осуществлении прогнозных расчетов требует их рассмотрения как неопределенных величин. Для их оценки был использован метод интервального представления данных, изложенный в разделе 2.7 данной монографии. Кратко напомним суть метода:

1. Генерируется выборка значений макропоказателя z.
2. По выборке значений макропоказателя z строится эмпирическая функция распределения этого показателя и приближенно строится функция принадлежности нечеткого образа.

Данная работа была проделана для взятых в качестве макропоказателя z удельных экологических коэффициентов. В качестве выборки значений макропоказателей были использованы данные таблицы 9.2. На рисунках 9.4-9.7 представлены примеры применения метода нечеткого представления данных для анализа экологических параметров.

Рисунок 9.4. Использование метода нечеткого представления данных на примере коэффициента образования загрязненных сточных вод (куб. м на 1 тыс. руб. ВВ, цены 2003 г.)
Рисунок 9.5. Использование метода нечеткого представления данных на примере коэффициента образования атмосферных загрязнений (тонн на 1 млн руб. ВВ, цены 2003 г.)

Методика применения интервального представления данных показывает, что для оценки объемов образования атмосферных и водных загрязнений в процессе прогнозирования с использованием модельного комплекса КАМИН более правильно принимать значения удельных коэффициентов не на уровне базового года, а обладающих наибольшей степенью правдоподобия, например, удельные коэффициенты образования и сброса загрязненных сточных вод, равны соответственно 0.91 куб. м на 1 тыс. руб. ВВ (значение функции правдоподобия 0.74 - на рис. 9.4) и 1.98 куб. м на 1 тыс. руб. ВВП (значение функции правдоподобия 0.76 - на рис. 9.5), удельные коэффициенты образования и выбросов основных загрязняющих атмосферу веществ - 4.33 тонн на 1 млн. руб. ВВ (значение функции правдоподобия 0.74 - на рис. 9.4) и 1.82 тонн на 1 млн. руб. ВВП в ценах 2003 года (значение функции правдоподобия 0.71 - на рис. 9.6).
Рисунок 9.6. Использование метода нечеткого представления данных на примере коэффициента сброса загрязненных сточных вод (куб. м на 1 тыс. руб. ВВП, цены 2003 г.)

Рисунок 9.7. Использование метода нечеткого представления данных на примере коэффициента выбросов атмосферных загрязнений (тонн на 1 млн руб. ВВП, цены 2003 г.)

Таким образом, размытое представление коэффициентов дает возможность провести множественный анализ экологических проблем, оценить степень правдоподобности каждого варианта и выполнить более обоснованный прогноз экологической ситуации. Далее приведем некоторые примеры такого прогноза.

В основу одного из вариантов прогноза эколого-экономического развития Российской Федерации на период с 2008 по 2012 гг с применением нечетко-множественных методов был положен так называемый оптимистический вариант, основные гипотезы и результаты которого изложены в разделе 7 данной монографии. Напомним, что данный
вариант предполагает среднегодовые темпы роста валового выпуска - 7.5%, что позволяет за прогнозируемый 5-летний период увеличить ВВП на 43.6%. Используя оценки наиболее правдоподобных коэффициентов образования загрязненных сточных вод и загрязняющих атмосферу веществ, полученные с помощью метода нечеткого представления данных, можно определить динамику образования загрязнений в прогнозируемом периоде (таблица 9.3). Данный прогноз предполагал гипотезу сохранения существующей экологической политики (сложившиеся к настоящему времени уровень затрат на охрану воды и воздуха – 1.4 % ВВП, степени очистки загрязненных сточных вод – 12.1% и улавливания загрязняющих атмосферу веществ – 73.8% в 2006 г). Данная гипотеза позволила оценить объемы улавливания загрязняющих атмосферу веществ и очистки загрязненных сточных вод и, соответственно, как разность образованных в процессе производства и ликвидированных объемов загрязнений – количество загрязненных сточных вод и атмосферных загрязнений, которое поступит в окружающую природную среду в прогнозируемом периоде (таблица 9.3, рисунки 9.7 и 9.8). Для оценки объемов выбросов от автотранспорта в прогнозируемом периоде была принята гипотеза их роста ежегодным темпом 2.5% (среднегодовой темп роста с 2000 по 2005 гг).

Таблица 9.3. Динамика экологических показателей в прогнозируемом периоде по оптимистическому варианту.

<table>
<thead>
<tr>
<th>Вода (млрд куб. метров)</th>
<th>2008 г</th>
<th>2009 г</th>
<th>2010 г</th>
<th>2011 г</th>
<th>2012 г</th>
</tr>
</thead>
<tbody>
<tr>
<td>Образование загрязненных сточных вод</td>
<td>29.8</td>
<td>32.0</td>
<td>34.4</td>
<td>37.0</td>
<td>39.8</td>
</tr>
<tr>
<td>Очистка загрязненных сточных вод</td>
<td>3.6</td>
<td>3.9</td>
<td>4.2</td>
<td>4.5</td>
<td>4.8</td>
</tr>
<tr>
<td>Сброс загрязненных сточных вод</td>
<td>26.2</td>
<td>28.1</td>
<td>30.2</td>
<td>32.5</td>
<td>35.0</td>
</tr>
<tr>
<td>Воздух (млн тонн)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Образование атмосферных загрязнений от стационарных источников</td>
<td>146.6</td>
<td>152.2</td>
<td>163.6</td>
<td>175.9</td>
<td>189.1</td>
</tr>
<tr>
<td>Улавливание атмосферных загрязнений</td>
<td>104.5</td>
<td>112.3</td>
<td>120.7</td>
<td>129.8</td>
<td>139.6</td>
</tr>
<tr>
<td>Выбросы загрязнений от стационарных источников</td>
<td>37.1</td>
<td>39.9</td>
<td>42.9</td>
<td>46.1</td>
<td>49.5</td>
</tr>
<tr>
<td>Автотранспортные выбросы</td>
<td>16.6</td>
<td>17.0</td>
<td>17.4</td>
<td>17.9</td>
<td>18.3</td>
</tr>
<tr>
<td>Выбросы атмосферных загрязнений с учетом автотранспорта</td>
<td>53.7</td>
<td>56.9</td>
<td>60.3</td>
<td>64.0</td>
<td>67.8</td>
</tr>
</tbody>
</table>

Второй вариант прогнозных расчетов был основан на прогнозе индикаторов экономики Российской Федерации с 2007 по 2011 гг, выполненном в Институте народнохозяйственного прогнозирования РАН (ИНП РАН) [66]. Результаты прогноза относительно динамики ВВП представлены в таблице 9.4. (т.к. прогноз ИНП РАН...
заканчивается 2011 годом, темп прироста ВВП и инфляция в 2012 году были приняты нами на уровне предыдущего года). Прогнозируемая динамика ВВП и полученные ранее с помощью метода нечеткого представления данных оценки наиболее правдоподобных коэффициентов сбросов загрязненных сточных вод и выбросов загрязняющих атмосферу веществ позволяют определить объемы загрязнений, поступающих в атмосферу и водоемы Российской Федерации (рисунки 9.7 и 9.8).

Таблица 9.4. Основные результаты прогноза ВВП, выполненного ИНП РАН

<table>
<thead>
<tr>
<th></th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Темп прироста ВВП в % к уровню предыдущего года</td>
<td>7.9</td>
<td>7.5</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>ВВП в текущих ценах, трлн. руб.</td>
<td>37.7</td>
<td>43.7</td>
<td>50.2</td>
<td>57.4</td>
<td>65.6</td>
</tr>
<tr>
<td>ВВП в ценах 2003 г, трлн. руб.</td>
<td>18.7</td>
<td>20.1</td>
<td>21.5</td>
<td>23.0</td>
<td>24.6</td>
</tr>
<tr>
<td>Дефлятор ВВП в % к уровню предыдущего года</td>
<td>9.7</td>
<td>7.7</td>
<td>7.5</td>
<td>6.9</td>
<td>6.9</td>
</tr>
</tbody>
</table>

Рисунок 9.8. Объемы выбросов загрязняющих атмосферу веществ (млн. тонн, с учетом автомобильного транспорта) по разным вариантам прогнозных расчетов.

Рисунок 9.9. Объемы сброса загрязненных сточных вод (млрд.м. куб) по разным вариантам прогнозных расчетов.
Можно наблюдать, что данные прогнозы различаются разным уровнем загрязнения водных ресурсов: по варианту, основанному на прогнозе ИНП РАН, объем сброса сточных вод в конце прогнозируемого периода превышает на 40% уровень оптимистического варианта. Оба варианта предполагают существенный рост нагрузки на окружающую природную среду (как по водным, так и по атмосферным ресурсам) в связи с выходом России на путь устойчивого экономического роста.

10. Нечеткий анализ неопределенности динамики цен и производства с использованием монетарного блока динамической модели межотраслевого баланса

Помимо анализа влияния монетарных и немонетарных факторов на инфляционную динамику, исследовалась зависимость производства от вариации денежной массы, нормы процента и обменного курса рубля в период экономического подъема.

После получения уравнений регрессии с удовлетворительными статистическими характеристиками как для динамики цен, так и для производства, они использовались для прогнозирования инфляции и производства в России на период 2008-2010 гг. с использованием инструментария нечетких методов.
10.1. Описание исходной информации

Для проведения расчетов были использованы следующие временные ряды поквартальных данных за период 1994-2007 гг.:

- номинальная величина денежного агрегата М2;
- номинальная норма процента МИBOR;
- номинальный обменный курс рубля к доллару США;
- индекс потребительских цен к предыдущему периоду;
- дефлятор ВВП;
- среднедушевая номинальная величина располагаемых денежных доходов населения, исчисляемая как среднемесячная величина за квартал;
- доля оплаты труда в составе ВВП;
- расходы консолидированного бюджета;
- инфляционные ожидания;
- тарифы на услуги естественных монополий;
- цены на нефть Urals.

Ряды исходных данных с поквартальным шагом содержатся в Приложении _ . Там же указаны источники информации. Некоторые из использованных в расчетах переменных были получены в результате преобразований. Например, информация по номинальной денежной массе М2 разрабатывается помесячно. В связи с этим, для проведения поквартальных расчетов денежная масса рассчитывается как среднеквартальная величина, полученная как среднее арифметическое значение помесячных данных.

Расчеты проводились как с номинальными, так и с реальными величинами. Эконометрические расчеты проводились с помощью статистического пакета Matrixer, разработанного на экономическом факультете НГУ А.Н. Цыплаковым [67].

В данной работе проверка стационарности проводилась с помощью критерия Дики-Фуллера, включенного в математическое обеспечение пакета Matrixer.

В результате проверки с использованием критерия Дики – Фуллера было определено, что все используемые в расчетах динамические ряды данных являются стационарными или интегрированными рядами первого порядка.

10.2. Анализ факторов, определивших инфляцию в России в 1994-1999 гг.

Динамика цен в исследуемом периоде анализировалась с помощью дефлятора ВВП и индекса потребительских цен. При этом под монетарными факторами понимались те
макроэкономические переменные, на которые центральный банк может оказать непосредственное воздействие, применяя инструменты кредитно-денежной политики. К ним были отнесены: денежная масса М2, обменный курс рубля к доллару США, норма процента (ставка МИBOR).

Для определения связи дефлятора ВВП и ИПЦ с монетарными и немонетарными факторами была проведена серия расчетов с использованием следующих уравнений.

На первом этапе исследования рассматривались такие факторы, как денежная масса М2, обменный курс рубля к доллару США и процентная ставка МИBOR и оценивалось их влияние на дефлятор ВВП и ИПЦ. Для этого использовалось регрессионное уравнение, которое в общем виде описывается следующим соотношением:

\[\Delta \pi_t = a + \sum_{j=0}^{n} \lambda_j \Delta M_{t-j} + \sum_{j=0}^{n} b_j \Delta EX_{t-j} + \sum_{j=0}^{n} c_j \Delta i_{t-j} + \eta_t, \]

где \(\Delta \pi_t \) – прирост индекса потребительских цен (ИПЦ) или прирост дефлятора ВВП в период \(t \) (в зависимости от того для какого показателя проводится расчет); \(\Delta M_t \) – прирост денежной массы или темп ее прироста в периоде \(t \); \(\Delta EX_t \) – изменение обменного курса рубля к доллару США или темп его прироста в периоде \(t \); \(\Delta i_t \) – прирост среднеквартальной процентной ставки МИBOR или темп ее прироста в периоде \(t \); \(\lambda_j, b_j, c_j \) – коэффициенты регрессионного уравнения; \(\eta_t \) – ошибка уравнения регрессии.

Изменение регрессоров может влиять на динамику цен с некоторым лагом. Поэтому в уравнениях регрессии объясняющие переменные включались с различными лагами, и определялось, какие лаговые переменные – регрессоры являлись значимыми для объясняемой переменной.

Серия расчетов с уравнением (10.1) для индекса потребительских цен позволила получить результаты, приведенные в таблице 10.1 и на графике 10.1. Из таблицы 10.1 следует, что динамика потребительских цен в периоде с 1994 по 1999 гг. в решающей степени (примерно на 68%) определялась вариацией денежной массой М2 с лагом 2 квартала и обменного курса рубля к доллару США. Согласно F-критерию модель специфицирована верно. Автокорреляция в ошибках не найдена (показатель Дарбина-Уотсона равен 2.2820). Значение коэффициента \(R^2_{adj} = 68.3\% \) показывает, что выбранные переменные достаточно хорошо объясняют вариацию ИПЦ в исследуемом периоде. Темп прироста ставки МИBOR оказался незначимым фактором для уравнения (10.1). Дополнительные расчеты с включением в уравнение регрессии в качестве независимых переменных немонетарных факторов (инфляционных ожиданий, среднедушевых денежных
не выявили статистически значимой зависимости ИПЦ от этих факторов для периода 1994-1999 гг.

<table>
<thead>
<tr>
<th>Зависимая переменная</th>
<th>Независимая переменная</th>
<th>Коэффициент</th>
<th>t-статистика</th>
<th>Уровень значимости t-статистики</th>
<th>Характеристики уравнения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Константа</td>
<td>-0.0107</td>
<td>-0.3499</td>
<td>0.7305</td>
<td>R^2 adj = 68.33%</td>
<td></td>
</tr>
<tr>
<td>Прирост индекса</td>
<td>Темп прироста номинальной M2 (лаг 2 кв.)</td>
<td>0.0059</td>
<td>3.7997</td>
<td>0.0013</td>
<td>DW = 2.2820</td>
</tr>
<tr>
<td>потребительских цен</td>
<td>Темп прироста номинального курса доллара</td>
<td>0.0046</td>
<td>5.5415</td>
<td>0.0000</td>
<td>F(2,18)= 22.58205</td>
</tr>
</tbody>
</table>

Примечания:
1) Для гипотезы о равенстве нулю данного параметра.
2) Уровень значимости t-статистики означает, что, если данный показатель имеет малое значение, например, меньше 5%, то переменная статистически значима.
3) R^2 adj – коэффициент детерминации, откорректированный с учетом степеней свободы.
4) DW - статистика Дарбина – Уотсона. Является характеристикой наличия автокорреляции в ошибке уравнения. Если DW имеет значения, близкое 2, то автокорреляция остатков отсутствует.
5) F - статистика Фишера для гипотезы о равенстве нулю коэффициентов при всех регрессорах, кроме константы. В скобках указано количество объясняющих переменных, кроме константы, и число наблюдений. Если уровень значимости в квадратных скобках мал, например, меньше 5%, - то регрессия в целом значима.

162
График 10.1. Реальный (сплошная линия) и оцененный (прерывистая линия) прирост ИПЦ в России в 1994-1999 гг. (%)\(^{10}\).

Далее рассмотрим анализ влияния этих же факторов (денежной массы М2, обменного курса рубля к доллару США и процентной ставки MIBOR) на дефлятор ВВП в период экономического спада. В результате вариантовых расчетов были выявлены наиболее значимые факторы, оказывающие влияние на динамику прироста дефлятора ВВП в исследуемом периоде: темп прироста номинальной денежной массы М2 и темп прироста номинального курса доллара. Результаты расчетов приведены в таблице 2. Значение F-статистики указывает на значимость регрессии. Статистика Дарбина-Уотсона равна 2,2621 и указывает на то, что данный показатель находится в области неопределенности, что не позволяет с уверенностью говорить об отсутствии автокорреляции остатков уравнения регрессии. Относительно невысокое значение коэффициента детерминации \(R^2_{adj}= 54.83\%\) позволяет сделать вывод о том, что, помимо перечисленных регрессоров, на дефлятор ВВП оказывают существенное влияние и другие факторы. Прирост ставки MIBOR оказался статистически незначимым фактором для уравнения (10.1).

Таблица 10.2. Монетарные факторы, определявшие прирост дефлятора ВВП в 1994-1999 гг.

<table>
<thead>
<tr>
<th>Зависимая переменная</th>
<th>Независимая переменная</th>
<th>Коэффициент</th>
<th>t-статистика</th>
<th>Уровень значимости t-статистики</th>
<th>Характеристики уравнения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Константа</td>
<td></td>
<td>0.0108</td>
<td>0.3834</td>
<td>0.7059</td>
<td>(R^2_{adj}= 54.83%)</td>
</tr>
<tr>
<td>Прирост дефлятора ВВП</td>
<td>Темп прироста номинального курса доллара</td>
<td>0.0028</td>
<td>3.7002</td>
<td>0.0016</td>
<td>DW =2.2621</td>
</tr>
<tr>
<td></td>
<td>Темп прироста номинальной М2 (лаг 2 кв.)</td>
<td>0.0050</td>
<td>3.5458</td>
<td>0.0023</td>
<td>F(2,18)= 13.13752 [0.0000]</td>
</tr>
</tbody>
</table>

\(^{10}\) На графике 1 и последующих графиках по оси ординат приводятся темпы прироста ИПЦ или дефлятора за квартал в процентах, по оси абсцисс – номера кварталов. Например, 4.95 означает 4 квартал 1995 г.
График 10.2. Реальный (сплошная линия) и оцененный (пунктирная линия) темп прироста дефлятора ВВП в России в 1994-1999 гг., определенный на основе влияния монетарных факторов, (%).

На втором этапе стояла задача исследовать влияние других (немонетарных) факторов на дефлятор ВВП. Уравнение (10.1) было модифицировано следующим образом: в число новых рассматриваемых факторов были включены: инфляционные ожидания, прирост (темп прироста) реального ВВП, прирост (темп прироста) государственных расходов консолидированного бюджета РФ, прирост (темп прироста) тарифов естественных монополий. Инфляционные ожидания определялись на основе дефлятора ВВП как его лаговые значения (с лагом не более 4 кварталов), а также как средние значения дефлятора ВВП за 2 или 4 предшествующих квартала. С учетом этих факторов уравнение (10.1) модифицировалось в уравнение (10.2).

\[
\Delta \pi_t = a + \sum_{j=0}^{n} \lambda_j \Delta M_{t-j} + \sum_{j=0}^{n} b_j \Delta E_{X_{t-j}} + \sum_{j=0}^{n} c_j \Delta i_{t-j} + \sum_{j=0}^{n} d_j \Delta \pi_{t-j} + \sum_{j=0}^{n} g_j \Delta GDP_{R_{t-j}} + \sum_{j=0}^{n} f_j \Delta G_{t-j} + \sum_{j=0}^{n} k \Delta IN_{t-j} + \sum_{i=1}^{m} \sum_{j=0}^{n} h_{ij} \Delta TR_{i,t-j} + \eta_t ,
\]

где \(\Delta GDP_{R_{t-j}} \) - прирост (темп прироста) реального ВВП в период \(t \); \(\Delta G_{t-j} \) - прирост (темп прироста) расходов консолидированного бюджета России в период \(t \); \(\sum_{j=0}^{n} \Delta \pi_{t-j} \) - изменение дефлятора ВВП в предшествующие периоды (прошлом квартале, позапрошлом квартале и т.д.) или, в некоторых вариантах расчетов, - средний прирост дефлятора ВВП (или ИПЦ – в случае, когда зависимой переменной был ИПЦ) за последние 2 квартала или 4 квартала; \(\Delta TR_{i,t} \) - изменение тарифа естественных монополий вида \(i \) в период времени \(t \); \(\Delta IN_{t} \) - изменение номинальных доходов населения в период \(t \) (в некоторых вариантах расчетов вместо этого показателя использовалось изменение номинальной заработной платы); \(d, g, f, k \).
k_j, h_{ij} – коэффициенты регрессионного уравнения; m – число рассматриваемых тарифов естественных монополий.

Считается, что в период высокой инфляции большее влияние имеют инфляционные ожидания. Исследуемый период захватывает временной интервал, когда инфляция была достаточно высокой. Задачей было выяснить степень влияния инфляционных ожиданий на дефлятор ВВП.

Результаты расчетов с использованием уравнения (10.2) для периода экономического спада (1994-1999 гг.) представлены в таблице 10.3 и на графике 10.3.

Из таблицы 10.3 следует, что в 1994-1999 гг. динамика дефлятора ВВП в России определялась на 89.7% вариацией следующих факторов: темпом прироста обменного курса рубля к доллару США, темпом прироста денежной массы М2, инфляционными ожиданиями с лагом 2 кв. и темпом прироста реального ВВП. Значение F-статистики указывает на значимость регрессии, а критерий Годфри (AR(1)=0.4281) указывает на отсутствие автокорреляции остатков регрессионного уравнения. Дополнительные расчеты с включением в уравнение 4 в качестве регрессоров других немонетарных факторов (среднедушевых денежных доходов, расходов бюджета) не выявили статистически значимой зависимости дефлятора ВВП от этих факторов.

По оценкам многих экономистов, одним из важнейших компонентов инфляции является рост тарифов на продукцию и услуги естественных монополий. В расчетах применимо к дефлятору ВВП и ИПЦ в качестве тарифов естественных монополий рассматривался: индексы цен на природный газ для промышленных предприятий, индексы цен на электроэнергию и индексы цен на грузовые перевозки. С учетом этих факторов была проведена расчеты, которые не выявили статистически значимой зависимости между приростом (или темпом прироста) дефлятора ВВП и ИПЦ и приростом тарифов на продукцию естественных монополий. На этом основании можно считать, что тарифы естественных монополий не влияли существенным образом на дефлятор ВВП и ИПЦ России в период 1994-1999 гг.

Таблица 10.3. Факторы, определяющие прирост дефлятора ВВП в 1994-1999 гг.

<table>
<thead>
<tr>
<th>Зависимая переменная</th>
<th>Независимая переменная</th>
<th>Коэффициент</th>
<th>t-статистика</th>
<th>Уровень значимости t-статистики</th>
<th>Характеристики уравнения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Прирост дефлятора</td>
<td>Константа</td>
<td>-0.0178</td>
<td>-1.2451</td>
<td>0.2310</td>
<td>$R^2_{adj} = 89.57%$</td>
</tr>
</tbody>
</table>

11 Критерий Годфри используется в виду того, что среди регрессоров есть лаговое значение зависимой переменной. В этом случае использование критерия Дарбина-Уотсона для проверки на отсутствие автокорреляции остатков регрессионного уравнения является некорректным.
Таблица

<table>
<thead>
<tr>
<th>ВВП</th>
<th>Темп прироста реального ВВП (лаг 4 кв.)</th>
<th>Темп прироста номинальной М2</th>
<th>Темп прироста номинального курса доллара</th>
<th>Инфляционные ожидания (лаг 2 кв.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.0022</td>
<td>-2.3095</td>
<td>0.0346</td>
<td>AR(1) = 1.2536 [0.2629]</td>
</tr>
<tr>
<td></td>
<td>0.0032</td>
<td>2.0361</td>
<td>0.0586</td>
<td>F(4,16)= 43.9399 [0.0000]</td>
</tr>
<tr>
<td></td>
<td>0.0025</td>
<td>6.6005</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.4753</td>
<td>4.6995</td>
<td>0.0002</td>
<td></td>
</tr>
</tbody>
</table>

График 10.3. Реальный (сплошная линия) и оцененный (прерывистая линия) темп прироста дефлятора ВВП в России в 1994-1999 гг. (%).

Основные выводы из проведенных расчетов для периода 1994-1999 гг.

1. Динамика потребительских цен (ИПЦ) в анализируемом периоде наилучшим образом примерно на 68% (см. таблицу 1) определялась вариацией монетарных факторов (темпом прироста номинальной денежной массы М2 с лагом в два квартала и темпом прироста номинального обменного курса рубля к доллару США). Для исследуемого периода (1994-1999 гг.) применительно к экономике России полученные результаты подтверждают известные положения теории о том, что увеличение номинальной денежной массы и падение курса национальной валюты (рост обменного курса доллара) усиливают инфляционные явления в экономике в целом. Остальные факторы (ставка MIBOR, инфляционные ожидания, среднедушевые денежные доходы населения, расходы консолидированного бюджета и тарифы естественных монополий) в наилучшем из построенных для ИПЦ уравнений оказались статистически незначимыми.
2. В период экономического спада дефлятор ВВП также находился под значительным воздействием монетарных факторов. Темп прироста номинальной массы М2 и обменного курса рубля к доллару США оказывали существенное воздействие на динамику этого важнейшего макроэкономического индикатора. Однако расчеты показывают, что монетарные факторы лишь примерно наполовину объясняли вариацию дефлятора ВВП. Если к монетарным факторам добавить инфляционные ожидания, определенные как величина дефлятора ВВП за позапрошлый квартал, и темп прироста реального ВВП с лагом в 4 квартала, то в таком сочетании названные независимые переменные на 89,6% объясняли вариацию дефлятора ВВП. Ставка процента МИБОР, среднедушевые денежные доходы, расходы консолидированного бюджета и тарифы естественных монополий оказались статистически незначимыми факторами для дефлятора ВВП в рассматриваемом периоде.

10.3. Анализ факторов, формировавших динамику цен в России в период 1999-2007 гг.

Факторы, определявшие динамику ИПЦ

На начальном этапе исследования оценивалось влияние на индекс потребительских цен следующих факторов: денежная масса М2, обменный курс рубля к доллару США и процентная ставка МИБОР. Для этого использовалось регрессионное уравнение (10.1). Расчеты с использованием этого уравнения применительно к ИПЦ показали, что при рассмотрении в качестве регрессоров только монетарных факторов статistically значимым для ИПЦ является только обменный курс рубля к доллару США. Однако в целом статистические характеристики уравнения регрессии являются неудовлетворительными: \(R^2_{adj} = 16,5 \% \), F - статистика указывает на незначимость регрессии в целом.

Поэтому второй этап состоял в анализе влияния немонетарных факторов и оценке их воздействия на динамику ИПЦ.

В качестве немонетарных факторов рассматривались: инфляционные ожидания и прирост (темп прироста) реального ВВП, тарифы естественных монополий (цены за электроэнергию и газ), темп прироста номинальной заработной платы, темп прироста номинальных доходов населения. Расчеты, проведенные на основе уравнения (10.2) для ИПЦ для периода экономического подъема (1999-2007 гг.), показали, что инфляционные ожидания и темп прироста реального ВВП примерно на две трети определяли динамику потребительских цен в период экономического подъема (\(R^2_{adj} = 66 \% \)). Однако дополнение
этих регрессоров монетарными факторами позволяет существенно улучшить характеристики уравнения регрессии (см. таблицу 10.4). Геометрическая иллюстрация результатов этих расчетов приведена на графике 10.4.

Из таблицы 10.4 видно, что коэффициент детерминации весьма высок ($R^2_{adj}= 89.08\%$), если в качестве регрессоров рассмотреть темп прироста номинального курса доллара, темп прироста номинальной денежной массы М2, прирост процентной ставки MIBOR с лагом 4 квартала, инфляционные ожидания, определенные как среднее значение ИПЦ за два предшествующих квartaла, темп прироста реального ВВП и прироста цен на нефть марки Utals. Иначе говоря, монетарные факторы в сочетании с инфляционными ожиданиями, темпом прироста реального ВВП и приростом цен на нефть становятся статистически значимыми для формирования прироста ИПЦ в 1999 - 2007 гг. На грани статистической значимости находится лишь темп прироста денежной массы M2, уровень значимости t-статистики для которой составляет 5.05 %. По критерию Годфри автокорреляция ошибок отсутствует (AR(1)= 0.01018 [0.9196]). F-статистика равна 41.8036 и указывает на значимость регрессии. Включение дополнительных факторов (среднедушевых денежных доходов населения, расходов консолидированного бюджета РФ, доли оплаты труда в ВВП и тарифов естественных монополий) в уравнение (10.4) применительно к приросту ИПЦ для периода 1999-2007 гг. показало, что названные регрессоры оказались статистически незначимыми.

Таблица 10.4. Факторы, определявшие прирост ИПЦ в 1999-2007 гг.

<table>
<thead>
<tr>
<th>Зависимая переменная</th>
<th>Независимая переменная</th>
<th>Коэффициент</th>
<th>t-статистика</th>
<th>Уровень значимости t-статистики</th>
<th>Характеристики уравнения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Прирост индекса потребительских цен</td>
<td>Константа</td>
<td>0.0110</td>
<td>2.5746</td>
<td>0.0166</td>
<td></td>
</tr>
<tr>
<td>Темп прироста реального ВВП</td>
<td>-0.1759</td>
<td>-12.5076</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Инфляционные ожидания как среднее значение ИПЦ за 2 предшествующих квартала</td>
<td>0.4120</td>
<td>3.6674</td>
<td>0.0012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Темп прироста номинального курса доллара с лагом 4 кв.</td>
<td>0.0015</td>
<td>3.2321</td>
<td>0.0036</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Темп прироста М2 с лагом 4 кв.</td>
<td>0.0008</td>
<td>2.0594</td>
<td>0.0505</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$R^2_{adj}= 89.08\%$

AR(1) =0.01018 [0.9196]

F(6,24)= 41.8035 [0.0000]
Прирост ставки MIBOR с лагом 4 кв. -0.0043 -4.1139 0.0004
Прирост цен на нефть (Urals) 0.0009 3.6752 0.0012

График 10.4. Реальный (сплошная линия) и оцененный (прерывистая линия) прирост индекса потребительских цен в России в 1999-2007 гг. (%).

Факторы, определяющие динамику дефлятора ВВП
Первоначально оценивалось влияние на дефлятор ВВП чисто монетарных факторов, таких как денежная масса М2, обменный курс рубля к доллару США и процентная ставка MIBOR. Для этого использовалось регрессионное уравнение (10.1). Расчеты с его использованием не дали положительных результатов. Это означает, что в период экономического подъема (1999-2007 гг.) монетарные факторы, взятые без учета воздействия других регрессоров, являлись статистически незначимыми для дефлятора ВВП в экономике России.

Следующий этап расчетов – включение в уравнение регрессии немонетарных факторов. В качестве объясняющих переменных использовались: темп прироста номинальных доходов населения, инфляционные ожидания (средние за 2 квартала), темп прироста реального ВВП, прирост тарифов естественных монополий прирост цен на нефть. В качестве тарифов естественных монополий рассматривались: индексы цен на природный газ для промышленных предприятий, индексы цен на электроэнергию и индексы цен на грузовые перевозки. С учетом этих факторов была проведена серия расчетов на основе уравнения (10.2).
Результаты наиболее удачного варианта расчетов представлены в таблице 5 и на графике 10.5. Как видно из таблицы 10.5, наилучший результат для прироста дефлятора ВВП был получен, когда в качестве объясняющих переменных выступают: прирост номинальных доходов населения с лагом в 4 квартала, прирост реального ВВП, прирост цен на нефть и изменение инфляционных ожиданий, определенных как среднее значение прироста дефлятора ВВП за 2 предшествующих квартала. Остальные лаговые значения этих переменных оказались в уравнении незначимы.

Значение коэффициента детерминации ($R^2_{adj} = 64.7\%$) и величина F-статистики (14,764215) и указывают на то, что регрессия в целом значима. По критерию Годфри автокорреляция ошибок уравнения отсутствует (AR(1)=0.423515[0.5152]).

Таблица 10.5. Факторы, определявшие прирост дефлятора ВВП в 1999-2007 гг. (%).

<table>
<thead>
<tr>
<th>Зависимая переменная</th>
<th>Независимая переменная</th>
<th>Коэффициент</th>
<th>t-статистика</th>
<th>Уровень значимости t-статистики</th>
<th>Характеристики уравнения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Прирост дефлятора ВВП</td>
<td>Константа</td>
<td>0.0235</td>
<td>3.6182</td>
<td>0.0013</td>
<td>$R^2_{adj} = 64.7%$</td>
</tr>
<tr>
<td></td>
<td>Прирост номинальных доходов населения (лаг 4 квартала)</td>
<td>0.00003</td>
<td>4.3934</td>
<td>0.0002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Темп прироста реального ВВП</td>
<td>-0.2806</td>
<td>-6.5258</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Прироста цен на нефть (Urals)</td>
<td>0.0022</td>
<td>2.7276</td>
<td>0.0113</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Инфляционные ожидания по дефлятору как прирост его среднего значения за 2 предшествующих квартала</td>
<td>0.2836</td>
<td>2.1749</td>
<td>0.0389</td>
<td></td>
</tr>
</tbody>
</table>
График 10.5. Реальный (сплошная линия) и оцененный (прерывистая линия) прирост дефлятора ВВП в России в 1999-2007 гг.

Основные выводы из проведенных расчетов для периода 1999-2007 гг.

1. Наилучший результат по динамике ИПЦ в анализируемом периоде показывает, что динамика этого показателя почти на 90 % определялась вариацией инфляционных ожиданий, обменного курса рубля к доллару США (с лагом 4 квартала), темпом прироста реального ВВП, приростом ставки MIBOR (с лагом 4 квартала), темпом проста денежной массы (с лагом 4 квартала) и приростом цен на нефть. Денежные доходы населения, расходы консолидированного бюджета и тарифы естественных монополий в рассматриваемом периоде для динамики ИПЦ оказались статистически незначимыми факторами.

2. В период экономического подъема на дефлятор ВВП по-прежнему оказывал влияние темп прироста реального ВВП и инфляционные ожидания. Однако темп прироста денежной массы M2, прирост ставки MIBOR и темп прироста обменного курса рубля к доллару оказались статистически незначимыми факторами. Статистически значимыми в данном периоде для дефлятора ВВП оказались такие немонетарные факторы как прирост номинальных доходов населения с лагом в 4 квартала и прирост цен на нефть. В целом все вышеперечисленные статистически значимые регрессоры примерно на 65% (см. табл. 10.5) определяли динамику дефлятора ВВП в период экономического подъема.

- В годы экономического кризиса денежно-кредитная политика являлась решающим фактором, оказывавшим воздействие на инфляционную динамику. Варьирование денежной массы и обменного курса рубля к доллару США прямо влияли на динамику ИПЦ и дефлятора ВВП.
- В период экономического подъема непосредственное влияние монетарных факторов на инфляцию ослабевает. Денежно-кредитная политика воздействует на динамику цен опосредованно через укрепление обменного курса рубля, снижение реальных процентных ставок, рост предложения денег. При переходе к экономическому росту на инфляцию значительно большее воздействие начинают оказывать такие немонетарные факторы как динамика доходов населения, рост производства (действует в направлении снижения инфляции), инфляционные ожидания и увеличение цен на нефть.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Дефлятор ВВП</td>
<td></td>
</tr>
<tr>
<td>(+) Темп прироста номинальной М2</td>
<td>(+) Прирост номинальных доходов населения [-4]</td>
</tr>
<tr>
<td>(-) Темп прироста реального ВВП [-4]</td>
<td>(-) Темп прироста реального ВВП</td>
</tr>
<tr>
<td>(+) Инфляционные ожидания [-2]</td>
<td>(+) Инфляционные ожидания</td>
</tr>
<tr>
<td>(+) Темп прироста номинального курса доллара</td>
<td>(+) Прирост цен на нефть</td>
</tr>
<tr>
<td>Индекс потребительских цен</td>
<td></td>
</tr>
<tr>
<td>(+) Темп прироста номинальной М2 [-2]</td>
<td>(-) Темп прироста реального ВВП</td>
</tr>
<tr>
<td>(+) Темп прироста номинального курса доллара</td>
<td>(+) Темп прироста номинального курса доллара [-4]</td>
</tr>
<tr>
<td></td>
<td>(+) Инфляционные ожидания</td>
</tr>
<tr>
<td>(+) Темп прироста номинальной денежной массы М2 [-4]</td>
<td>(+) Прирост номинальной ставки MIBOR [-4]</td>
</tr>
<tr>
<td>(-) Прирост номинальной ставки MIBOR [-4]</td>
<td>(+) Прирост цен на нефть</td>
</tr>
</tbody>
</table>

Примечание: в квадратных скобках указано запаздывание (в кварталах) изменения зависимой переменной в результате вариации соответствующего фактора (независимой переменной). В скобках перед каждым фактором стоит плюс или минус, что указывает на то,
Положительной или отрицательной зависимостью связаны зависимая и соответствующая независимая переменные.

- Полученные результаты дают статистическое обоснование вывода о том, что на этапе экономического роста снижение инфляции в России невозможно достигнуть, используя лишь инструменты монетарного контроля. Методы кредитно – денежной политики должны дополняться разносторонними приемами, обеспечивающими снижение инфляционных ожиданий, институциональными преобразованиями, способствующими снижению роста цен на продукцию и услуги естественных монополий, мерами по обеспечению соответствия темпов роста заработной платы темпам увеличения производительности труда в экономике.

10.5. Влияние монетарных факторов на динамику производства в России в период экономического подъема

Влияние монетарных факторов на динамику производства исследовалось на примере анализа воздействия данных факторов на динамику реального и номинального ВВП в период экономического подъема (2000 – 2007 гг.).

Расчеты показали, что из монетарных факторов на номинальный ВВП наиболее значительное влияние оказывает вариация так называемой денежной массы по методологии денежного обзора, то есть денежного агрегата, включающего депозиты в банках в иностранной валюте. Однако для построения функции регрессии с удовлетворительным значением коэффициента детерминации необходимо включить ряд других регрессоров: прирост цен на нефть марки Urals и прирост номинальных денежных доходов населения (см. Таблицу 10.7, График 10.6).

Таблица 10.7. Важнейшие факторы, определяющие прирост номинального ВВП в России в 2000 -2007 гг.

<table>
<thead>
<tr>
<th>Зависимая переменная</th>
<th>Независимая переменная</th>
<th>Коэффициент</th>
<th>t-статистика</th>
<th>Уровень значимости t-статистики</th>
<th>Характеристики уравнения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Прирост номинального ВВП</td>
<td>Константа</td>
<td>-28.0875</td>
<td>-0.3420</td>
<td>0.7347</td>
<td>R² adj= 54.1%</td>
</tr>
<tr>
<td>Прирост номинальных доходов населения</td>
<td>0.2206</td>
<td>2.6912</td>
<td>0.0115</td>
<td>DW =2.3534</td>
<td></td>
</tr>
<tr>
<td>Прироста цен на нефть (Urals) (лаг один квартал)</td>
<td>33.1444</td>
<td>2.5465</td>
<td>0.0163</td>
<td>F(3,30)=</td>
<td></td>
</tr>
</tbody>
</table>
График 10.6. Реальный (сплошная линия) и оцененный (прерывистая линия) прирост номинального ВВП в России в 2000-2007 гг.

Анализ динамики прироста ВПП (см. график 10.6) указывает на явно выраженную сезонность его колебаний. Поэтому следующим шагом, повышающим коэффициент детерминации было введение в функцию регрессии в явном виде фактора времени. Результаты расчетов, учитывающие сезонность в колебаниях прироста ВВП, приведены в таблице 10.8 и на графике 10.7. Расчеты проводились с использованием нелинейного метода наименьших квадратов.

Таблица 10.8. Важнейшие факторы, определившие прирост номинального ВВП в России в 2000-2007 гг. с учетом сезонности.

<table>
<thead>
<tr>
<th>Зависимая переменная</th>
<th>Независимая переменная</th>
<th>Коэффициент</th>
<th>t-статистика</th>
<th>Уровень значимости t-статистики</th>
<th>Характеристики уравнения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Прирост номинального ВВП</td>
<td>Константа</td>
<td>6.3957</td>
<td>0.1105</td>
<td>0.9128</td>
<td>$R^2_{adj}=77.5%$</td>
</tr>
<tr>
<td></td>
<td>Прирост номинальных доходов населения</td>
<td>0.1161</td>
<td>1.9228</td>
<td>0.0647</td>
<td>DW =2.0912</td>
</tr>
<tr>
<td></td>
<td>Прироста цен на нефть (Urals) (лаг один квартал)</td>
<td>23.2023</td>
<td>2.3616</td>
<td>0.0254</td>
<td>F(5.28)=23.6745</td>
</tr>
</tbody>
</table>
График 10.7. Реальный (сплошная линия) и оцененный с учетом сезонности (прерывистая линия) прирост номинального ВВП в России в 2000-2007 гг.

Как видно из результатов, приведенных в таблице 10.8, учет сезонности привел к тому, что коэффициент детерминации функции, описывающей динамику прироста номинального ВВП, существенно возрос.

Результаты расчетов по построению функции регрессии для прироста реального ВВП России в период экономического подъема приведены в таблице 10.8 и на графике 10.8.

<table>
<thead>
<tr>
<th>Зависимая переменная</th>
<th>Независимая переменная</th>
<th>Коэффициент</th>
<th>t-статистика</th>
<th>Уровень значимости t-статистики</th>
<th>Характеристики уравнения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Прирост реального</td>
<td>Константа</td>
<td>63.6772</td>
<td>0.9821</td>
<td>0.3359</td>
<td>$R^2_{adj} = 55.6%$</td>
</tr>
</tbody>
</table>
График 10.8. Реальный (сплошная линия) и оцененный с учетом сезонности (прерывистая линия) прирост реального ВВП в России в 2000-2007 гг.

Данные таблицы 10.9 указывают на то, что монетарные факторы (прирост реальной денежной массы по методологии денежного обзора, прирост реальной ставки MIBOR, прирост реального обменный курс рубля к доллару США) оказывали существенное воздействие на формирование прироста реального ВВП в период экономического роста. Наряду с этим, также как и в случае с приростом номинального ВВП динамика производства, исчисленная в сопоставимых ценах, находилась в значительной зависимости от динамики цен на нефть.

Статистические характеристики регрессионного уравнения, приведенные в таблице 10.9, указывает на его статистическую значимость (F(4,24)= 9.7536 [0.0001]) и отсутствие автокорреляции остатков (DW =2.0254). Вместе с тем, значение коэффициента детерминации (R² adj= 55.6%) указывает на необходимость включения других факторов, которые позволят более точно имитировать динамику реального ВВП. Из перечисленного в начале данного
раздела набора факторов, помимо приведенных в таблице 10.9, ни один не оказался статистически значимым. Очевидное наличие сезонности в колебаниях прироста реального ВВП подсказало необходимость включения в состав регрессоров фактора времени. По аналогии с функцией регрессии для прироста номинального ВВП в уравнение для прироста реального ВВП была включена синусоидальная зависимость от времени. Результаты расчетов с уче том сезонности приведены в таблице 10.10 и на графике 10.9.

Таблица 10.10. Важнейшие факторы, определявшие прирост реального ВВП в России в 2000-2007 гг. с учетом сезонности.

<table>
<thead>
<tr>
<th>Зависимая переменная</th>
<th>Независимая переменная</th>
<th>Коэффициент</th>
<th>t-статистика</th>
<th>Уровень значимости t-стат-ки</th>
<th>Характеристики уравнения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Прирост реального ВВП</td>
<td>Константа</td>
<td>53.9665</td>
<td>3.0768</td>
<td>0.0055</td>
<td>$R^2_{adj} = 97.2%$</td>
</tr>
<tr>
<td></td>
<td>Прирост реальной ставки процента (MIBOR) (лаг три квартала)</td>
<td>-7.2014</td>
<td>-2.3781</td>
<td>0.0265</td>
<td>DW = 2.3869</td>
</tr>
<tr>
<td></td>
<td>Прироста цен на нефть (Urals) (лаг один квартал)</td>
<td>7.4060</td>
<td>3.0359</td>
<td>0.0061</td>
<td>$F(6,22) = 160.1172$ [0.0000]</td>
</tr>
<tr>
<td></td>
<td>Прирост реальной денежной массы по методологии денежного обзора (лаг один квартал)</td>
<td>0.1479</td>
<td>1.6923</td>
<td>0.1047</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Прирост реального обменного курса доллара к рублю</td>
<td>43.2235</td>
<td>2.8322</td>
<td>0.0097</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sin(π-t/2)</td>
<td>-292.0324</td>
<td>-13.6667</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cos(π-t/2)</td>
<td>-172.2224</td>
<td>-12.2386</td>
<td>0.0000</td>
<td></td>
</tr>
</tbody>
</table>
График 10.9. Реальный (сплошная линия) и оцененный с учетом сезонности (прерывистая линия) прирост реального ВВП в России в 2000-2007 гг. с учетом сезонности.

Приведенные в таблице 10.10 результаты показывают, что учет сезонности позволил значительно улучшить статистические характеристики регрессионного уравнения. Коэффициент детерминации ($R_{adj}^2 = 97.2\%$) указывает на то, что полученная функция почти полностью объясняет флуктуации прироста реального ВВП в России в период экономического роста. Статистические характеристики регрессионного уравнения указывают также на его статистическую значимость ($F(6,22)= 160.1172 [0.0000]$) и отсутствие автокорреляции остатков ($DW = 2.3869$).

Регрессионные уравнения, характеристики которых приведены таблицах 10.4, 10.5, и 10.10 использовались при построении прогнозов динамики ИПЦ, дефлятора ВВП и реального ВВП для периода 2008 – 2010 гг.

10.6. Прогнозирование динамики производства с использованием методов нечетких множеств

С использованием регрессионного уравнения, параметры которого приведены в таблице 10.9, были выполнены прогнозные расчеты динамики реального ВВП России с поквартальным шагом на период с 3 квartaла 2008 г. по 4 квартал 2009 г. Для каждого из статистически значимых параметров – независимых переменных (прироста реальной ставки процента (MIBOR), прироста цен на нефть (Urals), прироста реальной денежной массы по методологии денежного обзора, прироста реального обменного рубля к доллару США) были приняты гипотезы относительно их базовых темпов прироста в прогнозируемом периоде (см. таблицу 10.11).

Таблица 10.11. Базовые темпы прироста и прирост независимых переменных в уравнении по приросту реального ВВП в 3 квартале 2008 г. – 4 квартале 2009 г., %.

<table>
<thead>
<tr>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 кв.</td>
</tr>
<tr>
<td>Темп прироста реальной денежной массы по методологии денежного обзора, %</td>
<td>6,87</td>
</tr>
<tr>
<td>Прирост реальной денежной массы по методологии денежного обзора, млрд. руб. в ценах 4 кв. 2001 г.</td>
<td>366,26</td>
</tr>
<tr>
<td>Цены на нефть Urals, $/баррель</td>
<td>113,70</td>
</tr>
<tr>
<td>Прирост цены на нефть Urals, $/баррель</td>
<td>-3,60</td>
</tr>
<tr>
<td>Прирост реальной ставка MIBOR, %</td>
<td>3,00%</td>
</tr>
<tr>
<td>Средний за квартал реальный курс руб./$, цены 4 квartaла 2001 г.</td>
<td>7,84</td>
</tr>
</tbody>
</table>
Прирост среднего за квартал реального курса руб./$

<table>
<thead>
<tr>
<th>Темп прироста реального ВВП, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>11,36</td>
</tr>
</tbody>
</table>

Относительно темпов прироста денежной массы по metodологии денежного обзора была принята гипотеза о том, что поквартальная вариация этого денежного агрегата в прогнозируемом периоде будет такой же, как и в 2007 г. Средняя за квартал цена барреля нефти Urals для 3 квартала 2008 г. была взята на основе фактического ее значения, в 4 квартале 2008 г. – на уровне средней цены сентября того же года. Для 2009 г. было принято предположение о том, что, в связи с весьма вероятным спадом производства в США и Европейском союзе, спрос на нефть будет на невысоком уровне и ее цена будет в среднем снижаться на 1 % в квартал. Относительно ставки MIBOR была принята гипотеза о ежеквартальном ее увеличении на 3 % в связи с возможным продолжением кризиса ликвидности на мировом и российском денежном рынках. Для динамики обменного курса рубля к доллару США была реализована гипотеза о том, что на фоне весьма вероятного экономического спада в США реальный обменный курс рубля к доллару США продолжит свое укрепление в среднем на уровне 3 % в квартал.

Результаты прогнозных расчетов темпа прироста реального ВВП России в прогнозном периоде при принятых предположениях приведены в последней строке таблицы 10.11. В соответствии с данным прогнозом и с учетом фактического темпа прироста реального ВВП в первом полугодии 2008 г., годовые темпы прироста данного показателя составляют: 8,3 % в 2008 г. и 6,6 % в 2009 г.

Далее было выполнено 4 следующих эксперимента: в отдельном эксперименте каждый из регрессоров отклонялся от значений, заданных в таблице 10.11 следующим образом: в 3 квартале 2008 г. ±2%, в 4 квартале 2008 г. ±4%, в 1 квартале 2009 г. ±6%, во 2 квартале 2009 г. ±8%, в 3 квартале 2009 г. ±10%, в 4 квартале 2009 г. ±12%. Иначе говоря, изучалось влияние нарастающей волатильности каждой из независимых переменных по мере удаления от базового периода прогноза (2 квартала 2008 г.) на устойчивость динамики реального ВВП экономики России.

При этом под устойчивостью, как и ранее (см. п. 7.2 раздела 7), нами понималось отношение площади пересечения подграфа функции принадлежности нечетко описываемого показателя (в данном случае - темпа прироста реального ВВП) к площади подграфа эталонного нечеткого описания этого показателя.

Применительно к анализу динамики устойчивости мы предлагаем ввести показатель интегральной устойчивости, которая является усредненной характеристикой устойчивости эндогенного показателя по отношению к вариации экзогенных показателей на протяжении всего прогнозируемого периода. Такой показатель может рассчитываться как среднее
арифметическое значение показателей устойчивости для всех интервалов прогнозного периода.

Результаты расчетов применительно к прогнозному периоду показали следующее.

1. Заданная вариация прироста нормы процента MIBOR и прироста обменного курса рубля к доллару США не оказывают заметного воздействия на устойчивость динамики реального ВВП России.

2. Наибольшее влияние на устойчивость динамики ВВП оказывает вариация денежной массы. На графиках рисунка 10.10 показана геометрическая интерпретация устойчивости темпов прироста реального ВВП в каждом квартале прогнозируемого периода. Из графиков видно, что, начиная с 4 квартала 2008 г., устойчивость темпа прироста реального ВВП России при нарастающей волатильности реальной денежной массы резко снижается и находится в пределах от 7,7 % во втором квартале 2009 г. до 31,3 % в третьем квартале 2009 г. Показатель интегральной устойчивости темпа прироста реального ВВП по отношению к вариации прироста денежной массы по методологии денежного обзора равен 29,2 %.

3. Значительное воздействие на устойчивость динамики прироста реального ВВП оказывает также волатильность прироста цен на нефть Urals. Как видно на графиках рисунка 10.11, темп прироста реального ВВП особенно чувствителен к вариации прироста цен на нефть в период с 3 квартала 2008 г. – по первый квartaл 2009 г. включительно. В данном временном интервале устойчивость исследуемой зависимой переменной колеблется в пределах от 20,4 % до 62,4 %. Однако в более отдаленной перспективе устойчивость темпа прироста реального ВВП России по отношению к колебаниям цен на нефть значительно возрастает и находится в пределах от 79,5 % (3 квартал 2009 г.) до 98,9 % (4 квартал 2009 г.). Показатель интегральной устойчивости темпа прироста реального ВВП по отношению к вариации цен на нефть составляет 64,2 % и примерно в два раза превышает значение этого индикатора для вариации прироста денежной массы.
Рисунок 10.10. Результаты прогнозных расчетов для случая вариации денежной массы по методологии денежного обзора.

Прогноз на 3 квартал 2008 г. Уровень устойчивости 81.24%

Прогноз на 4 квартал 2008 г. Уровень устойчивость 27.08%

Прогноз 1 на квартал 2009. Уровень устойчивость 17.98%
Прогноз на 2 квартал 2009 г. Уровень устойчивость 7,72%.

Прогноз на 3 квартал 2009 г. Уровень устойчивость 31,31%.

Прогноз на 4 квартал 2009 г. Уровень устойчивость 9,76%.
Рисунок 10.11. Результаты прогнозных расчетов для случая вариации цен на нефть Urals.

Прогноз на 3 квартал 2008 г. Уровень устойчивости 27,50%.

Прогноз на 4 квартал 2008 г. Уровень устойчивости 62,36%.

Прогноз на 1 квартал 2009 г. Уровень устойчивости 20,44%.
Прогноз на 2 квартал 2009 г. Уровень устойчивости 96,30%.

Прогноз на 3 квартал 2009 г. Уровень устойчивости 79,53%

Прогноз на 4 квартал 2009 г. Уровень устойчивости 98,89%.
11. Концепция согласования прогнозных расчетов по динамической межотраслевой модели с нечеткими параметрами и прогнозных расчетов по монетарному и экологическому блокам

Описанная выше (см. раздел 3) система КАМИН была модифицирована в систему макроэкономических и межотраслевых моделей с нечеткими параметрами КАМИН – ФАЗЗИ (KAMIN-FUZZY) [34], состоящую из следующих составных элементов.

1. Межотраслевая динамическая модель нечеткого прогнозирования производства и использования валового выпуска национальной экономики с распределенным строительным лагом (MOD1).
2. Межотраслевая модель нечеткого прогнозирования отраслевых индексов цен (MOD2).
3. Модель нечеткого прогнозирования финансовых потоков между субъектами финансовой деятельности (MOD3)\(^{12}\).
4. Модель монетарного блока с нечеткими параметрами (MOD4).
5. Модель нечеткого прогнозирования экологических процессов (MOD5).
6. Модель нечеткого прогнозирования доходов и расходов федерального и консолидированного бюджетов (MOD6).

Система КАМИН – ФАЗЗИ представляет собой совокупность увязанных между собой точечных моделей экономики, в которых не рассматриваются ее пространственная структура. Данная система является развитием динамической межотраслевой модели Н.Ф. Шатилова, модифицированной в 80-е годы XX века в полностью динамическую межотраслевую модель с учетом инвестиционного лага [28], дополненную позднее остальными моделями включенными в систему КАМИН. Система может быть использована для разработки следующих видов прогнозов.

1. Краткосрочные прогнозы на один – два года. В этом случае используются модели с квартальным шагом.
2. Для разработки среднесрочных (на 3-5 лет) и долгосрочных (на 10 и более лет) прогнозов. В этом случае используются модели с годовым шагом.

Работы по прогнозированию развития экономики России проводятся в различных научно-исследовательских центрах. Отметим работы, проводимые много лет в ИЭОПП СО РАН с пространственными динамическими межотраслевыми моделями. В работах А.Г. Гранберга, В.И. Суслова, С.А. Суспицына подробно рассматриваются проблемы согласования решений в модельных комплексах, описывающих взаимодействие различных

\(^{12}\) Математическое описание финансового блока приведено в работе [3].
подсистем экономической системы (см. [15], [14]). Исследования с использованием динамических межотраслевых моделей проводятся в Институте народнохозяйственного прогнозирования РАН (см. [44], [45]). Большую известность в мире получили работы по построению динамических макроэкономических и межотраслевых моделей, проводимые под руководством К. Алмона в группе ИНФОРУМ Мэрилендского университета в США [46]. Однако в упомянутых выше динамических моделях и модельных комплексах не используются методы нечеткого описания как экзогенных, так и эндогенных переменных.

По нашему мнению, система КАМИН – ФАЗЗИ, отображающая влияние неопределенности с использованием аппарата нечетких множеств, является определенным шагом вперед в направлении более адекватного описания динамики экономических систем.

Задачей данного раздела является описание монетарного (MOD4) и экологического (MOD5) блоков с нечеткими параметрами, а также концепция согласования результатов прогнозных расчетов по динамической межотраслевой модели с нечеткими параметрами с результатами прогнозных расчетов по монетарному и экологическому блокам с нечеткими параметрами. Система КАМИН – ФАЗЗИ с монетарным блоком используется для краткосрочного прогнозирования, а с экологическим блоком – для разработки среднесрочных и долгосрочных прогнозов.

11.1. Математическое описание монетарного блока с нечеткими параметрами и согласование результатов прогнозных расчетов по нему с моделями системы КАМИН-ФАЗЗИ

Включение в систему КАМИН-ФАЗЗИ монетарного блока позволяет при прогнозировании развития экономики решить две задачи.

1. С теоретической точки зрения она позволяет более полно описать экономическую систему за счет включения в анализ и прогнозирование рынка денег.

2. Повышает операционность системы КАМИН-ФАЗЗИ, поскольку позволяет отразить воздействие на экономическую динамику инструментов кредитно-денежной политики. Это, по нашему мнению, существенно расширяет возможности изучения влияния экономической политики в целом на развитие экономики на макро и отраслевом уровнях.

В монетарном блоке используются следующие параметры, которые описываются в терминах нечетких множеств:

13 Теоретическое обоснование необходимости построения монетарного блока ДММ и его описание без использования аппарата нечетких множеств дано в работе [6].
н — число отраслей народного хозяйства в модели, включая отрасли материального и нематериального производства;

\(H(t) \) — денежная база в период времени \(t \);

\(M(t) \) — денежная масса в период времени \(t \);

\(m(t) \) — мультипликатор денежной массы по отношению к денежной базе в период времени \(t \);

\(V(t) \) — скорость обращения денег в период времени \(t \);

\(i(t) \) — процентная ставка в период времени \(t \);

\(x(t) = (x_1(t), ..., x_n(t)) \) — вектор валового выпуска по отраслям экономики в сопоставимых ценах в период времени \(t \);

\(p(t) = (p_1(t), ..., p_n(t)) \) — вектор отраслевых индексов цен по отношению к сопоставимым в период времени \(t \);

\(k(t) \) — мультипликатор денежной массы по отношению к валовому выпуску в период времени \(t \);

\(h(t) \) — мультипликатор денежной массы к процентной ставке в период времени \(t \);

\(\overline{A}(t) \) — величина независимых затрат в период времени \(t \);

\(A(t) \) — величина независимых затрат в экономике с учетом влияния на нее изменения нормы процента в период времени \(t \);

\(b(t) \) — коэффициент, характеризующий зависимость величины инвестиций от изменения нормы процента \((I(t) = \overline{I}(t) + a(t)\cdot X(t) - b(t)\cdot i(t))\) в период времени \(t \), где \(X(t) \) — валовой выпуск, \(\overline{I}(t) \) — величина инвестиций, не зависящая от нормы процента и валового выпуска, \(a(t) \) — коэффициент, характеризующий зависимость инвестиций от валового выпуска;

\(\overline{\alpha}(t) \) — мультипликатор валового выпуска к величине независимых затрат в период времени \(t \), \(\overline{\alpha}(t) = \frac{1}{1 - a(t) - c(t)\cdot(1 - \tau(t))} \), где \(\tau(t) \) — обобщенная налоговая ставка в период \(t \), характеризующая уровень налогообложения в экономике, \(c(t) \) — коэффициент предельной склонности к потреблению.

Уравнение, определяющее совокупные затраты в экономике, не зависящие от величины валового выпуска, записывается следующим образом:

\[A(t) = \overline{A}(t) - b(t)\cdot i(t) \] (11.1)

Уравнение, описывающее равновесие на рынке товаров:
Уравнение, описывающее равновесие на рынке денег:

\[M(t) \cdot V(t) = \tilde{k}(t) \cdot \langle x(t), p(t) \rangle - h(t) \cdot i(t) \] \tag{11.3}

Уравнение (11.3) формально и содержательно отличается от соотношения, описывающего функцию \(LM \) в модели \(IS-LM \) не только вследствие перехода к векторной форме описания величин, но также в связи с тем, что в правой части (3) фигурирует валовой выпуск продукции за определенный период времени (квартал, год). Очевидно, что за этот же период времени каждая денежная единица делает несколько оборотов. Поэтому величина денежной массы, обеспечивающая процесс воспроизводства валового выпуска, должна быть умножена на число оборотов, совершаемых в среднем каждой денежной единицей.

Из соотношений (11.1)-(11.3) вытекает уравнение одновременного равновесия на рынках товаров и денег применительно к валовому выпуску:

\[\langle x(t), p(t) \rangle = \gamma(t) \bar{\alpha}(t) + \beta(t) M(t) \] \tag{11.4}

где \(\gamma(t) = \frac{-\bar{\alpha}(t) \cdot h(t)}{h(t) + b(t) \cdot \bar{\alpha}(t) \cdot \tilde{k}(t)} \), \(\beta(t) = \frac{-\bar{\alpha}(t) \cdot b(t) \cdot V(t)}{h(t) + b(t) \cdot \bar{\alpha}(t) \cdot \tilde{k}(t)} \)

На практике построение уравнения типа (11.4) сводится к выявлению монетарных факторов, наиболее существенно влияющих на динамику производства. При этом под монетарными факторами понимались те макроэкономические переменные, на которые центральный банк может оказать непосредственное воздействие, применяя инструменты кредитно-денежной политики. К ним нами были отнесены: денежная масса \(M2 \), обменный курс рубля к доллару США, норма процента (ставка МИВОР). Выявление таких факторов проводится с использованием методов регрессионного анализа. Уравнение (11.5) описывает зависимость динамики валового выпуска от монетарных факторов:

\[\Delta X_t = C + \sum_{j=1}^{\alpha} \lambda_j \Delta M_{t-j} + \sum_{j=1}^{\beta} b_j \Delta EX_{t-j} + \sum_{j=1}^{\gamma} c_j \Delta i_{t-j} + \eta_t, \] \tag{11.5}

где \(\Delta X_t \) – прирост реального валового выпуска или темп его прироста в период \(t \) (в зависимости от того для какого показателя проводится расчет); \(\Delta M_t \) – прирост реального денежного агрегата \(M2 \) или темп его прироста в периоде \(t \); \(\Delta EX_t \) – изменение реального обменного курса рубля к доллару США или темп его прироста в периоде \(t \); \(\Delta i_t \) – прирост
реальной среднеквартальной процентной ставки MIBOR или темп ее прироста в периоде \(t \); \(\lambda_j \), \(b_j \), \(c_j \) – коэффициенты регрессионного уравнения; \(\eta_t \) – ошибка уравнения регрессии; \(C \) – постоянная; \(\theta \) – величина максимального временного лага, принятая в расчетах.

Опыт работы с данными по экономике России позволяет сказать о том, что регрессионный анализ, приложенный к макроэкономическим переменным, исчисленным в постоянных ценах, может показать, что монетарные факторы оказывают незначительное воздействие на динамику производства (см., например, [6], гл. 6). Иначе говоря, коэффициент детерминации \((R^2) \) может иметь небольшое значение, а статистика Фишера \((F \text{– статистика}) \) указывать на то, что регрессия не значима или находится близко к границе статистической значимости. В этом случае набор регрессоров может быть расширен, например, за счет инструментов фискальной политики и других факторов. Примером модифицированного уравнения (5) служит уравнение (11.6):

\[
\Delta X_t = C + \sum_{j=0}^{\theta} \lambda_j \Delta M_{t-j} + \sum_{j=0}^{\theta} b_j \Delta Ex_{t-j} + \sum_{j=0}^{\theta} c_j \Delta i_{t-j} + \sum_{j=0}^{\theta} g_j \Delta \overline{TR}_{t-j} + \sum_{j=0}^{\theta} f_j \Delta \overline{G}_{t-j} + \sum_{j=0}^{\theta} k_j \Delta \tau_{t-j} + \eta_t, \\
\]

где \(\Delta \overline{TR}_{t} \) - прирост (темп прироста) реальных трансфертов в период \(t \); \(\Delta \overline{G}_{t} \) - прирост (темп прироста) реальных расходов консолидированного бюджета России в период \(t \); \(\Delta \tau_t \) - изменение уровня налогообложения (обобщенной налоговой ставки) в период \(t \); \(g_j \), \(f_j \), \(k_j \) – коэффициенты регрессионного уравнения.

В монетарном блоке MOD4 может решаться другая задача – определение зависимости динамики денежной массы от вариации объема валового выпуска и других переменных. Иначе говоря, проводится построение функции спроса на деньги.

В этом случае определяются параметры регрессионного уравнения, описывающего зависимость денежной массы M2 от объемов производства и других факторов, влияющих на спрос на деньги. Примером такого уравнения может служить соотношение (11.7):

\[
\Delta M_t = C + \sum_{j=0}^{\theta} \lambda_j \Delta X_{t-j} + \sum_{j=0}^{\theta} c_j \Delta i_{t-j} + \eta_t, \\
\]

На основе взаимодействия моделей MOD1, MOD2, MOD3 и MOD4 имеется возможность макроэкономического анализа и прогнозирования последствий реализации той или иной кредитно-денежной или фискальной политики в терминах нечетких множеств.
Общая схема взаимодействия вышеназванных четырех моделей в процессе экономического анализа и структура информационных потоков в системе КАМИН может быть описана следующим образом.

Вариант 1. Межотраслевая модель прогнозирования экономического развития на основе учета технологических возможностей отраслей (MOD1), выполняет расчет динамики отраслевых показателей в сопоставимых ценах. Найденная здесь нечеткая траектория изменения экономических показателей является базовой для всех остальных моделей. На входе в данную модель задаются управляющие экзогенные переменные, характеризующие динамику инвестиционной деятельности, динамику изменения технологических параметров отраслей и динамику численности занятых в производстве. Все или часть экзогенных переменных могут быть заданы нечетким образом. На выходе из модели - динамика объемов производства \(X(t)\) и основных фондов \(F(t)\) по каждой из отраслей, измеренная в сопоставимых ценах и описанная в терминах нечетких множеств (см. Рисунок 11.1).

Модель расчета динамики отраслевых цен (MOD2) определяет траекторию нечетких темпов изменения отраслевых цен \(P(t)\) по отношению к сопоставимым. На входе в данную модель наряду с траекторией, рассчитанной по первой модели, имеются информационные массивы, описывающие динамику таких стоимостных показателей отраслей, как оплата труда, прибыль, косвенные налоги, нормы производственной амортизации, структура и объем материальных затрат. На выходе из модели - массив темпов изменения отраслевых цен конечного использования, описанный в терминах нечетких множеств.

Модель расчета динамики финансовых потоков (MOD3) формирует баланс доходов и расходов каждого сектора национальной экономики (в номенклатуре секторов СНС) или каждого вида экономической деятельности (в номенклатуре ОКВЭД) – в зависимости от необходимой степени детализации анализа финансовой деятельности. На входе в модель - массивы, рассчитанные по первой и второй моделям, а также динамика структуры платежной матрицы между субъектами секторами экономики или видами экономической деятельности. На выходе - динамика матрицы объемов платежей, описанная в терминах нечетких множеств.

Модель монетарного блока (MOD4) выполняет расчет требуемого объема денежной массы для обеспечения функционирования экономики. На входе в модель - рассчитанные массивы из первых двух моделей. На выходе - требуемая динамика объема денежной массы.

Например, на основе расчетов по MOD1 с нечетким описанием экзогенных и эндогенных переменных можно определить устойчивость спроса на деньги, вычисляемого с
использованием монетарного блока (MOD4), по отношению к вариации валового выпуска экономики России в целом и валовых выпусков отдельных отраслей.

Вариант 2. Включение монетарного блока открывает возможности к решению в системе КАМИН обратной задачи, состоящей в оценке последствий изменения объема денежной массы и других монетарных параметров для динамики как номинального, так и реального (измеренного в сопоставимых ценах) валового выпуска и динамики цен (Рисунок 11.2).

Расчет прогнозной динамики валового выпуска в прогнозных ценах, соответствующего состоянию одновременного равновесия на рынке денег и товаров, определяется из модели MOD4 при заданной экзогенно динамике объема денежной массы, обменного курса рубля в доллару США и нормы процента в прогнозируемом периоде. Динамика монетарных и

14 Понятие устойчивости нечетко описанных эндогенных показателей модели по отношению к вариации нечетко описанных экзогенных показателей введено в работе [5].
других экзогенных показателей описывается в терминах нечетких множеств. Этот расчет производится с использованием верифицированных на ретроспективной информации уравнений регрессии, описывающих связь валового выпуска с вариацией монетарных и других задаваемых экзогенно факторов. Модель MOD1 позволяет осуществить отраслевую “развертку” полученной величины валового выпуска в сопоставимых ценах и произвести проверку реальности полученного значения валового выпуска с точки зрения возможности реализации полученной в MOD4 его динамики в рамках существующей технологической системы с учетом ее изменений в прогнозном периоде. Например, для обеспечения полученного из MOD 4 темпа роста валового выпуска потребуется нереалистичное увеличение основных фондов и трудовых ресурсов в прогнозном периоде. Модель MOD2 позволяет “развернуть” полученный в MOD4 вектор валового выпуска по элементам стоимостной структуры и определить динамику цен в прогнозируемом периоде.

В модели MOD3 прогнозируются величины финансовых потоков между секторами национальной экономики (или видами экономической деятельности), исходя из полученных в MOD4 и в MOD1 результатов. Этот прогноз также выполняется в терминах нечетких множеств.

Рисунок 11.2. Расчет в системе КАМИН-ФАЗЗИ по варианту 2.

В качестве другого примера использования системы КАМИН-ФАЗЗИ можно привести изучение устойчивости динамики нечетко описанного валового выпуска по отношению к колебаниям денежной массы, динамика которой задается также в терминах нечетких множеств. Нечетко описанная динамика денежной массы М2 задается экзогенно в монетарном блоке (MOD4). На основе нее с использованием регрессионного уравнения типа
(11.6) определяется изменение валового выпуска в прогнозном периоде. Динамика валового выпуска экономики в целом задается экзогенно в ДММ, с использованием которой рассчитываются прогнозные значения валовых выпусков отраслей, динамика основных фондов и других показателей, которые также могут быть описаны нечетким образом.

11.2. Математическое описание экологического блока с нечеткими параметрами и согласование результатов прогнозных расчетов по нему с моделями системы КАМИН-ФАЭЗИ

Современные динамические межотраслевые модели с учетом природоохранных мероприятий построены по принципу модели, предложенной В. Леонтьевым в 1970-1973 гг. В основе данной модели лежит признание необходимости и возможности выделения природоохранных мероприятий в структуре межотраслевого баланса. По усложненной модели леонтьевского типа американской компанией «Ресурсы для будущего» проводились исследования экономики США, результаты которого показали, что если природоохранные мероприятия будут осуществляться своевременно, то вполне реально значительное снижение уровня загрязнений при сравнительно небольшом сокращении темпов роста производства.

Уравнения, описывающие процесс образования и уничтожения атмосферных загрязнений были встроены в ранее созданную межрегиональную модель межотраслевого баланса мировой экономики (United Nations Global Input-Output Model – UNGIOM). С помощью данной модели в 70-х годах Организацией объединенных наций осуществлено исследование о влиянии проблем окружающей среды и природоохранных мероприятий на перспективы международного развития.

Большой опыт по использованию модели межотраслевого баланса для анализа проблем окружающей среды накоплен в России. Прогнозные расчеты с учетом экологического фактора проводятся сотрудниками Центрального экономико-математического института РАН, Института народнохозяйственного прогнозирования РАН, Высшей школы экономики,
Вычислительного центра РАН и т.д. [1-2, 10]. Однако, используемые модели чаще всего реализованы на региональной информации, или рассматривают какой-то один вид природного ресурса или загрязняющего вещества.

Предлагаемый нами подход отличается комплексностью рассмотрения экологических проблем во взаимоувязке с экономическими показателями развития РФ. Принципиальным отличием описанного ниже экологического блока является также описание неопределенности экологических параметров динамической межотраслевой модели с использованием аппарата нечетких множеств.

При функционировании экологического блока с нечеткими параметрами в системе КАМИН-ФАЗЗИ выделяются l элементов, которые представляют собой либо определенный вид загрязнения, который необходимо уничтожить, либо природный ресурс, который необходимо воспроизвести или очистить. Причем предполагается однозначное соответствие между каждым из этих элементов и определенным видом природоохранный деятельности. На данном этапе исследования в модельную систему встроены два природных ресурса – водные ресурсы и атмосферный воздух. Соответственно наряду с традиционными отраслями народного хозяйства рассматривается деятельность по предотвращению загрязнения атмосферного воздуха и деятельность по очистке загрязненных сточных вод.

Как для любой традиционной отрасли в модели MOD1 выделены производственные ресурсы (основные фонды, материальные оборотные фонды, трудовые ресурсы) природоохранный деятельности, имитируются процесс воспроизводства основных природоохранных фондов и процесс формирования вектора текущих природоохранных затрат \((x_n, x(t),...,x_n, x(t))\).

В модели MOD5 моделируются материально-вещественные показатели экологических процессов. С использованием вектора валового выпуска по отраслям экономики \(x(t)=\{x(t),...,x_n(t)\}\) и заданных нечетким образом параметров модели \(w_{ih}\) - коэффициентов образования объема загрязнителя \(h\) (\(h=1,...,l\)), приходящегося на производство единицы продукции отрасли \(i\) (\(i=1,...,n\)), определяется объем образования загрязнителя \(h\) \((V^o_h(t))\) в натуральном измерении:

\[
V^o_h(t)=\sum_{i=1}^{n} w_{ih}(t)x_i(t)+D_h(t) ,
\]

где \(D_h(t)\) - выпуск загрязнителя \(h\) в домашнем хозяйстве.

Например, на данном этапе исследования \(V^o_h(t)\) представляют собой объем образования загрязненных сточных вод (в куб. метрах) в процессе производства и объем
образования загрязняющих атмосферу веществ (в тоннах), отходящих от стационарных источников, $D_h(t)$ - автомобильные выбросы от автотранспорта (в тоннах), находящегося в пользовании домашних хозяйств. Все или часть из перечисленных параметров могут быть заданы нечетко. Описание нечетких параметров модели w_{ih} и методика их моделирования подробно изложены в работе [4].

Следующее ограничение MOD5 свызывает природоохранные текущие затраты и объемы улавливания или уничтожения загрязнений (восстановления уничтоженного или загрязненного природного ресурса):

$$x_{n+h}(t) = \sum_{i=1}^{n} g_{ih}(t)V_{ih}^{u}(t).$$ \hspace{1cm} (11.9)$$

где $g_{ih}(t)$ - текущие затраты на очистку (восстановление) единицы природного ресурса h (или на уничтожение единицы загрязнителя) в отрасли i, $V_{ih}^{u}(t)$ - объем уничтоженного или уловленного загрязнителя (объем восстановленного природного ресурса) вида h в году t в отрасли i в натуральном измерении (например, куб. метры очистки загрязненных сточных вод и тонны улавливания загрязняющих атмосферу веществ).

Существует ограничение по объёму загрязнителя h, поступающего в окружающую среду без очистки, или по объему уничтоженного, но невосстановленного природного ресурса $V_{h}^{z}(t)$:

$$V_{h}^{z}(t) = V_{h}^{o}(t) - V_{h}^{u}(t), \quad \text{где} \quad V_{h}^{u}(t) = \sum_{i=1}^{n} V_{ih}^{u}(t).$$ \hspace{1cm} (11.10)$$

В нашем случае данный параметр может рассматриваться как объем сброса загрязненных сточных вод (в куб. метрах) или объем выбросов загрязняющих атмосферу веществ (в тоннах).

Расчеты в системе моделей КАМИН-ФАЗЗИ с участием MOD5 могут проводиться в двух вариантах.

Вариант 1. Согласно выбранным направлениям природоохранный политики общество определяет затраты, которые оно может себе позволить потратить на улучшение экологической ситуации в стране. В MOD1 происходит процесс моделирования воспроизводства основных природоохранных фондов, необходимых для осуществления экологических затрат. С использованием гипотез об экономическом развитии отраслей и возможностях экономики осуществляем природоохранные затраты в MOD1 осуществляется.
прогнозирование динамики производства в отраслях народного хозяйства. Основываясь на данной динамике, на заданных нечетким образом удельных показателях образования загрязнений (коэффициентах образования загрязненных сточных вод на единицу выпускаемой продукции, коэффициентах образования загрязняющих атмосферу веществ на единицу выпускаемой продукции) и на величинах экологических затрат в MOD5 прогнозируются объемы образования загрязнений в народном хозяйстве, объемы улавливания и очистки загрязняющих веществ. Следовательно, мы получаем объемы сбросов загрязненных сточных вод в водоемы РФ и выбросов основных загрязняющих атмосферу веществ, оцененные наиболее правдоподобным образом (рисунок 11.3).

Вариант 2. Задача также может быть поставлена следующим образом. В соответствии с международными и национальными программными документами экологического направления (Киотский протокол, Федеральная целевая программа «Экология и природные ресурсы России» и др.) устанавливаются ограничения на сбросы и выбросы загрязняющих веществ в окружающую природную среду.

Рисунок 11.3. Расчет в системе КАМИН-ФААЗИ с использованием MOD5 по варианту 1.
По результатам прогнозных расчетов в MOD5 определяются объемы образования загрязняющих веществ и величины текущих природоохранных затрат (соответственно и объемы улавливания загрязнений), которые обеспечат заданную нагрузку на окружающую природную среду. Далее происходит корректировка: перераспределение ресурсов в пользу природоохранной деятельности, что отразится на прогнозируемой динамике выпуска в отраслях народного хозяйства, и, следовательно, на объемах образования загрязнений в производственной сфере. На следующем этапе опять определяются необходимые объемы улавливания или уничтожения загрязнений и природоохранные затраты и так происходит до тех пор, пока не будет получен сбалансированный прогноз в терминах нечетких множеств. Он определяет валовые отраслевые выпуски и экологические затраты, обеспечивающие заданные объемы сбросов загрязненных сточных вод и выбросов основных загрязняющих атмосферу веществ.

11.3. Математическая формализация нечеткого согласования расчетов в системе КАМИН-ФАЗЗИ

Нечеткие расчеты по всему комплексу моделей системы КАМИН-ФАЗЗИ проводятся с использованием единой информационной базы, сформированной на основе исходной информации системы КАМИН (см. [6], [36]). Расширение информационной базы при переходе к системе КАМИН-ФАЗЗИ состоит из дополнительных параметров, описанных в
терминах нечетких множеств. Единая исходная информация является основой для выполнения комплексных исследований. В то же время, несогласованность статистических данных и наличие в них ошибок и неточностей приводит к необходимости согласования отдельных параметров информационной базы между собой. Целью корректировки параметров является согласованность расчетных показателей, полученных по разным моделям.

Наличие нечетких параметров в информационной базе и нечетких расчетных (эндогенных) показателей приводит к проблеме их нечеткого согласования. В частности, такая проблема возникает при согласовании расчетов по базовой модели системы КАМИН-ФАЗЗИ - MOD1, моделям MOD2, MOD3, MOD6 и расчетов по монетарному (MOD4) и экологическому (MOD5) блокам.

В качестве основного показателя, характеризующего степень согласованности параметров информационной базы в системе КАМИН-ФАЗЗИ, предлагается использовать следующую функцию правдоподобности:

\[T(A; B) = \min \{ P_l(A; B), P_l(B; A) \}, \quad (11.11) \]

описанную в работе [54]. Здесь

\[P_l(A; B) = \frac{\| \chi_A \cap B \|}{\| B \|}, \quad (11.12) \]

\[\| A \| = \int_{\mathbb{R}^n} \chi_A d\eta < \infty, \quad (11.13) \]

\(\eta \) - мера в \(\mathbb{R}^n \), \(\chi_A \) - функция принадлежности нечеткого множества \(A \).

Если обозначить через \(d = (d_1, ..., d_n) \in D \) набор параметров информационной базы, часть из которых являются нечеткими, то результат применения \(i \)-й модели, включенной в КАМИН-ФАЗЗИ, к вектору \(d \) представляет собой набор нечетких показателей \(f_i(d) \).

Обозначим через \(x(d) \) и \(y(d) \) нечеткие множества, полученные по разным моделям системы КАМИН-ФАЗЗИ и описывающие один и тот же расчетный показатель. Теперь задача согласования формулируется как задача максимизации:

\[T(x(d); y(d)) \rightarrow \max, \quad d \in D. \quad (11.14) \]

Алгоритм случайного поиска решения задачи (14) заключается в следующем.

1) Фиксируется бесконечно малое число \(\varepsilon > 0 \).

2) Случайным образом строится новое \(\tilde{d} \in D \).
3) Вычисляются показатели $x(\tilde{a})$, $y(\tilde{a})$. Шаги 2)-3) повторяются N раз. В результате получается набор $\tilde{a}_1,...,\tilde{a}_N$.

4) Если $\max_{1\leq i\leq N} T(x(\tilde{a}_i), y(\tilde{a}_i)) = T(x(\tilde{a}_b), y(\tilde{a}_b)) < T(x(d), y(d)) + \varepsilon$, то процесс заканчивается, и значение d объявляется искомым. Если $\max_{1\leq i\leq N} T(x(\tilde{a}_i), y(\tilde{a}_i)) = T(x(\tilde{a}_c), y(\tilde{a}_c)) \geq T(x(d), y(d)) + \varepsilon$, то в качестве d берется значение \tilde{a}_b, и процесс продолжается, начиная с шага 2.

Поскольку, для любого $d \in D$ справедливы неравенства $0 \leq T(x(d), y(d)) \leq 1$, то при $\varepsilon > 0$ через конечное число шагов алгоритм решения задачи (4) заканчивает работу.

Математическое обоснование описанного алгоритма содержится в работе [54].
Список литературы

10. Бочаров Е.П., Гусев А.А. Применение математического моделирования для решения задач государственного регулирования рынков прав на использование ассимиляционного потенциала окружающей среды. Экономика природопользования, №5, 2002.
26. Наличие отдельных видов основных фондов крупных и средних коммерческих организаций Российской Федерации по полной учетной стоимости на начало 2005 года по видам экономической деятельности. Официальные данные Федеральной службы государственной статистики России. 2006.
29. Основные фонды крупных и средних коммерческих организаций на начало 2005 года в разрезе отраслей экономики (по полной учетной стоимости, миллионов рублей). Официальные данные Федеральной службы государственной статистики России. 2006.
32. Павлов А.В., Павлов В.Н. Математическое обоснование расчетов по оптимизационной межотраслевой модели с нечеткими параметрами. Вестник НГУ, Том 6, Вып. 1, 2006, с. 19-32.
33. Павлов А.В., Павлов В.Н. Нечеткая оптимизация. Препринт. Издательство ИЭОПП СО РАН, 2000 г
34. Павлов А.В., Павлов В.Н. Нечеткое согласование макроэкономических показателей. Вестник НГУ. Серия: социально – экономические науки. Том 8, Вып. 2, 2008. - С.
42. Соколов В.Г., Смирнов В.А. Исследование гибкости и надежности экономических систем. Новосибирск: Наука, 1990.
45. Широв А.А., Янтовский А.А. «Об инструментарии долгосрочного макроэкономического прогнозирования». Экономист, №2, 2008, с. 31-44.
51. **Hicks J. R.** Mr. Keynes and the Classics: A Suggested Interpretation // Econometrica, April 1937. P. 147-159.

66. **www.macroforecast.ru**

67. **www.nsu.ru/ef/tsv**

Приложение А
Коэффициенты материалоемкости произведенного валового выпуска отраслей национальной экономики России в 2003 г.

<table>
<thead>
<tr>
<th>Отрасли</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Производство машин и оборудования</td>
<td></td>
</tr>
<tr>
<td>2. Строительство зданий и сооружений</td>
<td></td>
</tr>
<tr>
<td>3. Электроэнергетика</td>
<td>0,031</td>
<td>0,013</td>
<td>0,123</td>
<td>0,021</td>
<td>0,021</td>
<td>0,008</td>
<td>0,026</td>
<td>0,043</td>
<td>0,046</td>
<td>0,067</td>
<td>0,031</td>
<td>0,033</td>
</tr>
<tr>
<td>4. Нефтедобыча</td>
<td>0,000</td>
<td>0,000</td>
<td>0,004</td>
<td>0,006</td>
<td>0,347</td>
<td>0,001</td>
<td>0,001</td>
<td>0,000</td>
<td>0,000</td>
<td>0,043</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>5. Нефтепереработка</td>
<td>0,028</td>
<td>0,051</td>
<td>0,086</td>
<td>0,023</td>
<td>0,009</td>
<td>0,004</td>
<td>0,013</td>
<td>0,028</td>
<td>0,018</td>
<td>0,019</td>
<td>0,028</td>
<td>0,046</td>
</tr>
<tr>
<td>6. Газовая промышленность</td>
<td>0,010</td>
<td>0,001</td>
<td>0,182</td>
<td>0,002</td>
<td>0,001</td>
<td>0,026</td>
<td>0,001</td>
<td>0,035</td>
<td>0,008</td>
<td>0,036</td>
<td>0,010</td>
<td>0,007</td>
</tr>
<tr>
<td>7. Прочие отрасли топливной промышленности</td>
<td>0,007</td>
<td>0,005</td>
<td>0,070</td>
<td>0,001</td>
<td>0,000</td>
<td>0,000</td>
<td>0,091</td>
<td>0,069</td>
<td>0,003</td>
<td>0,011</td>
<td>0,007</td>
<td>0,010</td>
</tr>
<tr>
<td>8. Черная металлургия</td>
<td>0,110</td>
<td>0,057</td>
<td>0,004</td>
<td>0,009</td>
<td>0,001</td>
<td>0,001</td>
<td>0,009</td>
<td>0,257</td>
<td>0,011</td>
<td>0,022</td>
<td>0,110</td>
<td>0,010</td>
</tr>
<tr>
<td>9. Цветная металлургия</td>
<td>0,053</td>
<td>0,004</td>
<td>0,007</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,039</td>
<td>0,340</td>
<td>0,011</td>
<td>0,053</td>
<td>0,008</td>
</tr>
<tr>
<td>10. Химия и нефтехимия</td>
<td>0,035</td>
<td>0,022</td>
<td>0,006</td>
<td>0,012</td>
<td>0,002</td>
<td>0,004</td>
<td>0,020</td>
<td>0,007</td>
<td>0,012</td>
<td>0,212</td>
<td>0,035</td>
<td>0,032</td>
</tr>
<tr>
<td>11. Металлообработка</td>
<td>0,204</td>
<td>0,080</td>
<td>0,018</td>
<td>0,015</td>
<td>0,003</td>
<td>0,001</td>
<td>0,033</td>
<td>0,018</td>
<td>0,021</td>
<td>0,019</td>
<td>0,204</td>
<td>0,035</td>
</tr>
<tr>
<td>12. Лесная, деревооб-ая и цел.-бум. Промышленность</td>
<td>0,008</td>
<td>0,033</td>
<td>0,001</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,006</td>
<td>0,003</td>
<td>0,002</td>
<td>0,018</td>
<td>0,008</td>
<td>0,215</td>
</tr>
<tr>
<td>13. Промышленность строительных материалов</td>
<td>0,004</td>
<td>0,153</td>
<td>0,002</td>
<td>0,001</td>
<td>0,000</td>
<td>0,000</td>
<td>0,003</td>
<td>0,002</td>
<td>0,001</td>
<td>0,005</td>
<td>0,004</td>
<td>0,004</td>
</tr>
<tr>
<td>14. Легкая промышленность</td>
<td>0,003</td>
<td>0,001</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,002</td>
<td>0,002</td>
<td>0,000</td>
<td>0,005</td>
<td>0,003</td>
<td>0,009</td>
</tr>
<tr>
<td>15. Пищевая промышленность</td>
<td>0,001</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,001</td>
<td>0,001</td>
<td>0,000</td>
<td>0,007</td>
<td>0,001</td>
<td>0,001</td>
</tr>
<tr>
<td>16. Прочие отрасли промышленности</td>
<td>0,004</td>
<td>0,001</td>
<td>0,003</td>
<td>0,000</td>
<td>0,001</td>
<td>0,001</td>
<td>0,002</td>
<td>0,002</td>
<td>0,001</td>
<td>0,004</td>
<td>0,004</td>
<td>0,002</td>
</tr>
<tr>
<td>17. Капитальный ремонт зданий и сооружений</td>
<td>0,005</td>
<td>0,021</td>
<td>0,0271</td>
<td>0,0109</td>
<td>0,0009</td>
<td>0,0007</td>
<td>0,0024</td>
<td>0,0026</td>
<td>0,0061</td>
<td>0,0271</td>
<td>0,0109</td>
<td>0,0001</td>
</tr>
<tr>
<td>18. Капитальный ремонт машин и оборудования</td>
<td>0,001</td>
<td>0,0065</td>
<td>0,0052</td>
<td>0,0012</td>
<td>0,0003</td>
<td>0,0001</td>
<td>0,0013</td>
<td>0,0011</td>
<td>0,0006</td>
<td>0,0052</td>
<td>0,0012</td>
<td>0,0003</td>
</tr>
<tr>
<td>19. Сельское и лесное хозяйство</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,001</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>20. Транспорт и связь</td>
<td>0,009</td>
<td>0,019</td>
<td>0,007</td>
<td>0,022</td>
<td>0,002</td>
<td>0,002</td>
<td>0,025</td>
<td>0,008</td>
<td>0,007</td>
<td>0,016</td>
<td>0,009</td>
<td>0,014</td>
</tr>
<tr>
<td>21. Торговля</td>
<td>0,017</td>
<td>0,020</td>
<td>0,015</td>
<td>0,009</td>
<td>0,003</td>
<td>0,026</td>
<td>0,011</td>
<td>0,005</td>
<td>0,017</td>
<td>0,009</td>
<td>0,017</td>
<td>0,014</td>
</tr>
<tr>
<td>22. Прочие материальные услуги</td>
<td>0,004</td>
<td>0,005</td>
<td>0,006</td>
<td>0,003</td>
<td>0,001</td>
<td>0,001</td>
<td>0,002</td>
<td>0,003</td>
<td>0,002</td>
<td>0,004</td>
<td>0,004</td>
<td>0,003</td>
</tr>
<tr>
<td>23. Нематериальные услуги</td>
<td>0,034</td>
<td>0,010</td>
<td>0,029</td>
<td>0,022</td>
<td>0,004</td>
<td>0,004</td>
<td>0,011</td>
<td>0,017</td>
<td>0,021</td>
<td>0,011</td>
<td>0,034</td>
<td>0,011</td>
</tr>
</tbody>
</table>
Продолжение приложения А

<table>
<thead>
<tr>
<th>Отрасли</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Производство машин и оборудования</td>
<td></td>
</tr>
<tr>
<td>2. Строительство зданий и сооружений</td>
<td></td>
</tr>
<tr>
<td>3. Электроэнергетика</td>
<td>0,050</td>
<td>0,032</td>
<td>0,009</td>
<td>0,020</td>
<td>0,013</td>
<td>0,031</td>
<td>0,013</td>
<td>0,054</td>
<td>0,040</td>
<td>0,002</td>
<td>0,048</td>
</tr>
<tr>
<td>4. Нефтедобыча</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,004</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>5. Нефтепереработка</td>
<td>0,048</td>
<td>0,007</td>
<td>0,016</td>
<td>0,011</td>
<td>0,051</td>
<td>0,028</td>
<td>0,040</td>
<td>0,114</td>
<td>0,097</td>
<td>0,008</td>
<td>0,030</td>
</tr>
<tr>
<td>6. Газовая промышленность</td>
<td>0,048</td>
<td>0,006</td>
<td>0,004</td>
<td>0,004</td>
<td>0,001</td>
<td>0,010</td>
<td>0,001</td>
<td>0,021</td>
<td>0,015</td>
<td>0,001</td>
<td>0,019</td>
</tr>
<tr>
<td>7. Прочие отрасли топливной промышленности</td>
<td>0,010</td>
<td>0,006</td>
<td>0,002</td>
<td>0,003</td>
<td>0,005</td>
<td>0,007</td>
<td>0,003</td>
<td>0,004</td>
<td>0,009</td>
<td>0,000</td>
<td>0,010</td>
</tr>
<tr>
<td>8. Черная металлургия</td>
<td>0,058</td>
<td>0,003</td>
<td>0,002</td>
<td>0,008</td>
<td>0,057</td>
<td>0,110</td>
<td>0,000</td>
<td>0,017</td>
<td>0,010</td>
<td>0,001</td>
<td>0,004</td>
</tr>
<tr>
<td>9. Цветная металлургия</td>
<td>0,009</td>
<td>0,000</td>
<td>0,002</td>
<td>0,152</td>
<td>0,004</td>
<td>0,053</td>
<td>0,000</td>
<td>0,001</td>
<td>0,001</td>
<td>0,000</td>
<td>0,001</td>
</tr>
<tr>
<td>10. Химия и нефтехимия</td>
<td>0,026</td>
<td>0,061</td>
<td>0,007</td>
<td>0,041</td>
<td>0,022</td>
<td>0,035</td>
<td>0,015</td>
<td>0,020</td>
<td>0,084</td>
<td>0,004</td>
<td>0,025</td>
</tr>
<tr>
<td>11. Металлообработка</td>
<td>0,021</td>
<td>0,008</td>
<td>0,010</td>
<td>0,019</td>
<td>0,080</td>
<td>0,204</td>
<td>0,029</td>
<td>0,119</td>
<td>0,125</td>
<td>0,035</td>
<td>0,037</td>
</tr>
<tr>
<td>12. Лесная, деревооб- и цел.- бум. Промышленность</td>
<td>0,011</td>
<td>0,002</td>
<td>0,010</td>
<td>0,083</td>
<td>0,033</td>
<td>0,008</td>
<td>0,001</td>
<td>0,010</td>
<td>0,061</td>
<td>0,032</td>
<td>0,006</td>
</tr>
<tr>
<td>13. Промышленность строительных материалов</td>
<td>0,129</td>
<td>0,001</td>
<td>0,003</td>
<td>0,002</td>
<td>0,153</td>
<td>0,004</td>
<td>0,002</td>
<td>0,011</td>
<td>0,030</td>
<td>0,001</td>
<td>0,006</td>
</tr>
<tr>
<td>14. Легкая промышленность</td>
<td>0,003</td>
<td>0,351</td>
<td>0,001</td>
<td>0,011</td>
<td>0,001</td>
<td>0,003</td>
<td>0,001</td>
<td>0,04</td>
<td>0,23</td>
<td>0,004</td>
<td>0,009</td>
</tr>
<tr>
<td>15. Пищевая промышленность</td>
<td>0,000</td>
<td>0,002</td>
<td>0,194</td>
<td>0,017</td>
<td>0,000</td>
<td>0,001</td>
<td>0,021</td>
<td>0,003</td>
<td>0,114</td>
<td>0,002</td>
<td>0,038</td>
</tr>
<tr>
<td>16. Прочие отрасли промышленности</td>
<td>0,002</td>
<td>0,002</td>
<td>0,005</td>
<td>0,040</td>
<td>0,001</td>
<td>0,004</td>
<td>0,034</td>
<td>0,007</td>
<td>0,020</td>
<td>0,084</td>
<td>0,009</td>
</tr>
<tr>
<td>17. Капитальный ремонт зданий и сооружений (ф/с)</td>
<td>0,0034</td>
<td>0,0056</td>
<td>0,0019</td>
<td>0,0023</td>
<td>0,0020</td>
<td>0,0008</td>
<td>0,0044</td>
<td>0,0020</td>
<td>0,0040</td>
<td>0,001 6</td>
<td>0,0614</td>
</tr>
<tr>
<td>18. Капитальный ремонт машин и оборудования (ф/с)</td>
<td>0,0013</td>
<td>0,0011</td>
<td>0,0010</td>
<td>0,0008</td>
<td>0,0005</td>
<td>0,0005</td>
<td>0,0011</td>
<td>0,0005</td>
<td>0,0008</td>
<td>0,001 7</td>
<td>0,0130</td>
</tr>
<tr>
<td>19. Сельское и лесное хозяйство</td>
<td>0,000</td>
<td>0,019</td>
<td>0,145</td>
<td>0,059</td>
<td>0,000</td>
<td>0,000</td>
<td>0,203</td>
<td>0,000</td>
<td>0,035</td>
<td>0,000</td>
<td>0,010</td>
</tr>
<tr>
<td>20. Транспорт и связь</td>
<td>0,015</td>
<td>0,004</td>
<td>0,066</td>
<td>0,019</td>
<td>0,099</td>
<td>0,011</td>
<td>0,054</td>
<td>0,417</td>
<td>0,017</td>
<td>0,036</td>
<td></td>
</tr>
<tr>
<td>21. Торговля</td>
<td>0,013</td>
<td>0,008</td>
<td>0,011</td>
<td>0,014</td>
<td>0,020</td>
<td>0,017</td>
<td>0,003</td>
<td>0,116</td>
<td>0,259</td>
<td>0,027</td>
<td>0,024</td>
</tr>
<tr>
<td>22. Прочие материальные услуги</td>
<td>0,003</td>
<td>0,003</td>
<td>0,002</td>
<td>0,006</td>
<td>0,005</td>
<td>0,004</td>
<td>0,001</td>
<td>0,012</td>
<td>0,070</td>
<td>0,030</td>
<td>0,009</td>
</tr>
<tr>
<td>23. Нематериальные услуги</td>
<td>0,009</td>
<td>0,008</td>
<td>0,006</td>
<td>0,010</td>
<td>0,010</td>
<td>0,034</td>
<td>0,005</td>
<td>0,042</td>
<td>0,048</td>
<td>0,012</td>
<td>0,162</td>
</tr>
</tbody>
</table>
Приложение Б
Коэффициенты материалоемкости произведенного валового выпуска отраслей национальной экономики России в 2005 г. (оценка)

<table>
<thead>
<tr>
<th>Отрасли</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.Производство машин и оборудования</td>
<td>-</td>
</tr>
<tr>
<td>2.Строительство зданий и сооружений</td>
<td>-</td>
</tr>
<tr>
<td>3.Электроэнергетика</td>
<td>0,0281</td>
<td>0,0118</td>
<td>0,1102</td>
<td>0,0190</td>
<td>0,0185</td>
<td>0,0074</td>
<td>0,0232</td>
<td>0,0387</td>
<td>0,0414</td>
<td>0,0603</td>
<td>0,0281</td>
<td>0,0293</td>
<td>0,0448</td>
<td>0,0289</td>
</tr>
<tr>
<td>4.Нефтедобыча</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0041</td>
<td>0,0057</td>
<td>0,3547</td>
<td>0,0013</td>
<td>0,0007</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0441</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>5.Нефтепереработка</td>
<td>0,0253</td>
<td>0,0463</td>
<td>0,0783</td>
<td>0,0214</td>
<td>0,0085</td>
<td>0,0039</td>
<td>0,0121</td>
<td>0,0257</td>
<td>0,0162</td>
<td>0,0173</td>
<td>0,0253</td>
<td>0,0419</td>
<td>0,0438</td>
<td>0,0063</td>
</tr>
<tr>
<td>6.Газовая промышленность</td>
<td>0,0092</td>
<td>0,0006</td>
<td>0,1602</td>
<td>0,0020</td>
<td>0,0006</td>
<td>0,0233</td>
<td>0,0111</td>
<td>0,0308</td>
<td>0,0066</td>
<td>0,0319</td>
<td>0,0092</td>
<td>0,0060</td>
<td>0,0423</td>
<td>0,0050</td>
</tr>
<tr>
<td>7.Прочие отрасли топливной промышленности</td>
<td>0,0077</td>
<td>0,0047</td>
<td>0,0730</td>
<td>0,0011</td>
<td>0,0002</td>
<td>0,0001</td>
<td>0,0049</td>
<td>0,0714</td>
<td>0,0032</td>
<td>0,0111</td>
<td>0,0077</td>
<td>0,0106</td>
<td>0,0109</td>
<td>0,0058</td>
</tr>
<tr>
<td>8.Черная металлургия</td>
<td>0,1037</td>
<td>0,0540</td>
<td>0,0037</td>
<td>0,0083</td>
<td>0,0008</td>
<td>0,0005</td>
<td>0,0090</td>
<td>0,2430</td>
<td>0,0108</td>
<td>0,0213</td>
<td>0,1037</td>
<td>0,0099</td>
<td>0,0552</td>
<td>0,0027</td>
</tr>
<tr>
<td>9.Цветная металлургия</td>
<td>0,0491</td>
<td>0,0034</td>
<td>0,0065</td>
<td>0,0004</td>
<td>0,0001</td>
<td>0,0002</td>
<td>0,0002</td>
<td>0,0360</td>
<td>0,3137</td>
<td>0,0103</td>
<td>0,0491</td>
<td>0,0073</td>
<td>0,0085</td>
<td>0,0004</td>
</tr>
<tr>
<td>10.Химия, нефтехимия</td>
<td>0,0342</td>
<td>0,0210</td>
<td>0,0057</td>
<td>0,0117</td>
<td>0,0021</td>
<td>0,0042</td>
<td>0,0197</td>
<td>0,0068</td>
<td>0,0111</td>
<td>0,2048</td>
<td>0,0342</td>
<td>0,0312</td>
<td>0,0256</td>
<td>0,0590</td>
</tr>
<tr>
<td>11.Металлообработка</td>
<td>0,1967</td>
<td>0,0771</td>
<td>0,0172</td>
<td>0,0144</td>
<td>0,0028</td>
<td>0,0010</td>
<td>0,0316</td>
<td>0,0177</td>
<td>0,0204</td>
<td>0,0181</td>
<td>0,1967</td>
<td>0,0339</td>
<td>0,0203</td>
<td>0,0073</td>
</tr>
<tr>
<td>12.Лесная, деревообрабатывающая и целлюлозно-бумажная промышленность</td>
<td>0,0074</td>
<td>0,0324</td>
<td>0,0006</td>
<td>0,0002</td>
<td>0,0001</td>
<td>0,0000</td>
<td>0,0058</td>
<td>0,0026</td>
<td>0,0015</td>
<td>0,0174</td>
<td>0,0074</td>
<td>0,2090</td>
<td>0,0103</td>
<td>0,0023</td>
</tr>
<tr>
<td>13.Промышленность строительных материалов</td>
<td>0,0035</td>
<td>0,1479</td>
<td>0,0016</td>
<td>0,0012</td>
<td>0,0001</td>
<td>0,0000</td>
<td>0,0028</td>
<td>0,0022</td>
<td>0,0010</td>
<td>0,0532</td>
<td>0,0035</td>
<td>0,0036</td>
<td>0,1242</td>
<td>0,0006</td>
</tr>
<tr>
<td>14.Легкая промышленность</td>
<td>0,0032</td>
<td>0,0013</td>
<td>0,0003</td>
<td>0,0003</td>
<td>0,0000</td>
<td>0,0001</td>
<td>0,0020</td>
<td>0,0017</td>
<td>0,0003</td>
<td>0,0048</td>
<td>0,0032</td>
<td>0,0090</td>
<td>0,0027</td>
<td>0,3539</td>
</tr>
<tr>
<td>15.Пищевая промышленность</td>
<td>0,0011</td>
<td>0,0003</td>
<td>0,0002</td>
<td>0,0002</td>
<td>0,0001</td>
<td>0,0000</td>
<td>0,0005</td>
<td>0,0006</td>
<td>0,0004</td>
<td>0,0066</td>
<td>0,0011</td>
<td>0,0010</td>
<td>0,0003</td>
<td>0,0023</td>
</tr>
<tr>
<td>16.Прочие отрасли промышленности</td>
<td>0,0039</td>
<td>0,0010</td>
<td>0,0029</td>
<td>0,0004</td>
<td>0,0008</td>
<td>0,0011</td>
<td>0,0021</td>
<td>0,0025</td>
<td>0,0009</td>
<td>0,0040</td>
<td>0,0039</td>
<td>0,0018</td>
<td>0,0019</td>
<td>0,0019</td>
</tr>
<tr>
<td>17.Капитальный ремонт зданий и сооружений</td>
<td>0,0054</td>
<td>0,0022</td>
<td>0,0279</td>
<td>0,0112</td>
<td>0,0009</td>
<td>0,0007</td>
<td>0,0024</td>
<td>0,0027</td>
<td>0,0063</td>
<td>0,0035</td>
<td>0,0058</td>
<td>0,0019</td>
<td>0,0024</td>
<td>0,0021</td>
</tr>
<tr>
<td>18.Капитальный ремонт машин и оборудования</td>
<td>0,0011</td>
<td>0,0005</td>
<td>0,0530</td>
<td>0,0120</td>
<td>0,0003</td>
<td>0,0001</td>
<td>0,0013</td>
<td>0,0012</td>
<td>0,0006</td>
<td>0,0013</td>
<td>0,0122</td>
<td>0,0010</td>
<td>0,0008</td>
<td>0,0005</td>
</tr>
<tr>
<td>19.Сельское и лесное хозяйство</td>
<td>0,0003</td>
<td>0,0000</td>
<td>0,0002</td>
<td>0,0001</td>
<td>0,0001</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0003</td>
<td>0,0000</td>
<td>0,0003</td>
<td>0,0003</td>
<td>0,0001</td>
<td>0,0142</td>
</tr>
<tr>
<td>20.Транспорт и связь</td>
<td>0,0072</td>
<td>0,0156</td>
<td>0,0063</td>
<td>0,0184</td>
<td>0,0017</td>
<td>0,0017</td>
<td>0,0206</td>
<td>0,0068</td>
<td>0,0061</td>
<td>0,0138</td>
<td>0,0072</td>
<td>0,0117</td>
<td>0,0124</td>
<td>0,0034</td>
</tr>
<tr>
<td>21.Торговля</td>
<td>0,0164</td>
<td>0,0194</td>
<td>0,0145</td>
<td>0,0084</td>
<td>0,0028</td>
<td>0,0260</td>
<td>0,0114</td>
<td>0,0049</td>
<td>0,0171</td>
<td>0,0090</td>
<td>0,0164</td>
<td>0,0134</td>
<td>0,0125</td>
<td>0,0079</td>
</tr>
<tr>
<td>22.Прочие материальные услуги</td>
<td>0,0048</td>
<td>0,0058</td>
<td>0,0067</td>
<td>0,0034</td>
<td>0,0015</td>
<td>0,0015</td>
<td>0,0024</td>
<td>0,0034</td>
<td>0,0027</td>
<td>0,0045</td>
<td>0,0048</td>
<td>0,0032</td>
<td>0,0037</td>
<td>0,0035</td>
</tr>
<tr>
<td>23.Нематериальные услуги</td>
<td>0,0339</td>
<td>0,0099</td>
<td>0,0284</td>
<td>0,0223</td>
<td>0,0035</td>
<td>0,0037</td>
<td>0,0113</td>
<td>0,0171</td>
<td>0,0209</td>
<td>0,0110</td>
<td>0,0339</td>
<td>0,0108</td>
<td>0,0089</td>
<td>0,0078</td>
</tr>
<tr>
<td>Отрасли</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Производство машин и оборудования</td>
<td></td>
</tr>
<tr>
<td>2. Строительство зданий и сооружений</td>
<td></td>
</tr>
<tr>
<td>3. Электроэнергетика</td>
<td>0,0080</td>
<td>0,0183</td>
<td>0,0118</td>
<td>0,0281</td>
<td>0,0113</td>
<td>0,0482</td>
<td>0,0358</td>
<td>0,0017</td>
<td>0,0425</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Нефтедобыча</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0037</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Нефтепереработка</td>
<td>0,0146</td>
<td>0,0098</td>
<td>0,0463</td>
<td>0,0253</td>
<td>0,0368</td>
<td>0,1039</td>
<td>0,0884</td>
<td>0,0074</td>
<td>0,0276</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Газовая промышленность</td>
<td>0,0033</td>
<td>0,0038</td>
<td>0,0006</td>
<td>0,0092</td>
<td>0,0011</td>
<td>0,0186</td>
<td>0,0136</td>
<td>0,0012</td>
<td>0,0167</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Прочие отрасли топливной промышленности</td>
<td>0,0021</td>
<td>0,0031</td>
<td>0,0047</td>
<td>0,0077</td>
<td>0,0027</td>
<td>0,0046</td>
<td>0,0094</td>
<td>0,0003</td>
<td>0,0108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Черная металлургия</td>
<td>0,0019</td>
<td>0,0071</td>
<td>0,0540</td>
<td>0,1037</td>
<td>0,0003</td>
<td>0,0161</td>
<td>0,0099</td>
<td>0,0008</td>
<td>0,0039</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Цветная металлургия</td>
<td>0,0022</td>
<td>0,1405</td>
<td>0,0034</td>
<td>0,0491</td>
<td>0,0000</td>
<td>0,0008</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Химия, нефтехимия</td>
<td>0,0071</td>
<td>0,0395</td>
<td>0,0210</td>
<td>0,0342</td>
<td>0,0147</td>
<td>0,0194</td>
<td>0,0809</td>
<td>0,0041</td>
<td>0,0241</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Металлообработка</td>
<td>0,0094</td>
<td>0,0182</td>
<td>0,0771</td>
<td>0,1967</td>
<td>0,0276</td>
<td>0,1143</td>
<td>0,1200</td>
<td>0,0340</td>
<td>0,0359</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Лесная, деревообрабатывающая и целлюлозно-бумажная промышленность</td>
<td>0,0102</td>
<td>0,0802</td>
<td>0,0324</td>
<td>0,0074</td>
<td>0,0007</td>
<td>0,0093</td>
<td>0,0593</td>
<td>0,0313</td>
<td>0,0054</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Промышленность строительных материалов</td>
<td>0,0026</td>
<td>0,0016</td>
<td>0,1479</td>
<td>0,0035</td>
<td>0,0016</td>
<td>0,0107</td>
<td>0,0290</td>
<td>0,0009</td>
<td>0,0056</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Легкая промышленность</td>
<td>0,0015</td>
<td>0,0108</td>
<td>0,0013</td>
<td>0,0032</td>
<td>0,0008</td>
<td>0,0040</td>
<td>0,0235</td>
<td>0,0040</td>
<td>0,0091</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Пищевая промышленность</td>
<td>0,1838</td>
<td>0,0163</td>
<td>0,0003</td>
<td>0,0011</td>
<td>0,0202</td>
<td>0,0227</td>
<td>0,1075</td>
<td>0,0021</td>
<td>0,0361</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Прочие отрасли промышленности</td>
<td>0,0048</td>
<td>0,0404</td>
<td>0,0010</td>
<td>0,0039</td>
<td>0,0351</td>
<td>0,0068</td>
<td>0,0203</td>
<td>0,0857</td>
<td>0,0089</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Капитальный ремонт зданий и сооружений</td>
<td>0,0009</td>
<td>0,0046</td>
<td>0,0021</td>
<td>0,0041</td>
<td>0,0109</td>
<td>0,0630</td>
<td>0,0082</td>
<td>0,0026</td>
<td>0,0346</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Капитальный ремонт машин и оборудования</td>
<td>0,0005</td>
<td>0,0011</td>
<td>0,0005</td>
<td>0,0008</td>
<td>0,0018</td>
<td>0,0132</td>
<td>0,0004</td>
<td>0,0003</td>
<td>0,0045</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Сельское и лесное хозяйство</td>
<td>0,1084</td>
<td>0,0439</td>
<td>0,0000</td>
<td>0,0003</td>
<td>0,1522</td>
<td>0,0000</td>
<td>0,0262</td>
<td>0,0000</td>
<td>0,0073</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Транспорт и связь</td>
<td>0,0048</td>
<td>0,0054</td>
<td>0,0156</td>
<td>0,0072</td>
<td>0,0095</td>
<td>0,0449</td>
<td>0,3495</td>
<td>0,0142</td>
<td>0,0305</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21. Торговля</td>
<td>0,0111</td>
<td>0,0135</td>
<td>0,0194</td>
<td>0,0164</td>
<td>0,0033</td>
<td>0,1142</td>
<td>0,2554</td>
<td>0,0262</td>
<td>0,0234</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22. Прочие материальные услуги</td>
<td>0,0025</td>
<td>0,0068</td>
<td>0,0058</td>
<td>0,0048</td>
<td>0,0008</td>
<td>0,0135</td>
<td>0,0762</td>
<td>0,0326</td>
<td>0,0101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23. Нематериальные услуги</td>
<td>0,0058</td>
<td>0,0099</td>
<td>0,0099</td>
<td>0,0339</td>
<td>0,0047</td>
<td>0,0416</td>
<td>0,0481</td>
<td>0,0114</td>
<td>0,1614</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Приложение B
Коэффициенты фондоемкости произведенного валового выпуска отраслей национальной экономики России в 2005 г. (оценка)

<table>
<thead>
<tr>
<th>Виды основных фондов</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Машины и оборудование</td>
<td>0.1696</td>
<td>0.0829</td>
<td>1.0377</td>
<td>0.2478</td>
<td>0.0888</td>
<td>0.0407</td>
<td>0.2213</td>
<td>0.2341</td>
<td>0.1413</td>
<td>0.2457</td>
<td>0.2074</td>
<td>0.2127</td>
<td>0.1477</td>
<td>0.1111</td>
</tr>
<tr>
<td>Здания, сооружения, передаточные устройства</td>
<td>0.2514</td>
<td>0.1319</td>
<td>1.6101</td>
<td>0.7023</td>
<td>0.0692</td>
<td>0.0659</td>
<td>0.1227</td>
<td>0.1587</td>
<td>0.4386</td>
<td>0.1917</td>
<td>0.3063</td>
<td>0.1253</td>
<td>0.1310</td>
<td>0.1295</td>
</tr>
</tbody>
</table>

Продолжение приложения B

<table>
<thead>
<tr>
<th>Виды основных фондов</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Машины и оборудование</td>
<td>0.1450</td>
<td>0.2268</td>
<td>0.0826</td>
<td>0.1396</td>
<td>0.3486</td>
<td>2.6696</td>
<td>0.0809</td>
<td>0.0641</td>
<td>0.7627</td>
</tr>
<tr>
<td>Здания, сооружения, передаточные устройства</td>
<td>0.0682</td>
<td>0.2804</td>
<td>0.1314</td>
<td>0.2064</td>
<td>0.5002</td>
<td>3.5604</td>
<td>0.4338</td>
<td>0.1166</td>
<td>1.8071</td>
</tr>
</tbody>
</table>
Приложение Г

Макроэкономические показатели России в период 1994-2007 гг. (поквартальный шаг)

<table>
<thead>
<tr>
<th>Год</th>
<th>Квартал</th>
<th>Номинальный ВВП, млрд. руб.</th>
<th>Среднеквартальная номинальная М2, млрд. руб.</th>
<th>Средний за кв. номинальный курс долл. США, руб./долл.</th>
<th>Дефлятор ВВП</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>I</td>
<td>87,6</td>
<td>41,5</td>
<td>1,6</td>
<td>0,00%</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>130,3</td>
<td>59,6</td>
<td>1,9</td>
<td>146,77%</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>168,0</td>
<td>81,1</td>
<td>2,2</td>
<td>111,30%</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>224,8</td>
<td>97,1</td>
<td>3,2</td>
<td>146,65%</td>
</tr>
<tr>
<td>1995</td>
<td>I</td>
<td>235,0</td>
<td>108,1</td>
<td>4,3</td>
<td>119,13%</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>324,3</td>
<td>149,1</td>
<td>4,9</td>
<td>133,33%</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>421,1</td>
<td>185,0</td>
<td>4,5</td>
<td>112,09%</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>448,1</td>
<td>211,6</td>
<td>4,6</td>
<td>116,62%</td>
</tr>
<tr>
<td>1996</td>
<td>I</td>
<td>425,3</td>
<td>229,2</td>
<td>4,8</td>
<td>106,17%</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>468,4</td>
<td>257,4</td>
<td>5</td>
<td>107,71%</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>548,9</td>
<td>274,4</td>
<td>5,3</td>
<td>103,43%</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>565,2</td>
<td>285,4</td>
<td>5,5</td>
<td>109,96%</td>
</tr>
<tr>
<td>1997</td>
<td>I</td>
<td>512,4</td>
<td>298,4</td>
<td>5,7</td>
<td>98,76%</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>555,1</td>
<td>332,7</td>
<td>5,8</td>
<td>106,37%</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>634,2</td>
<td>363,5</td>
<td>5,8</td>
<td>97,28%</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>640,8</td>
<td>366,8</td>
<td>5,9</td>
<td>107,11%</td>
</tr>
<tr>
<td>1998</td>
<td>I</td>
<td>550,9</td>
<td>368,6</td>
<td>6</td>
<td>98,52%</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>602,5</td>
<td>371,0</td>
<td>6,2</td>
<td>106,80%</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>675,5</td>
<td>363,5</td>
<td>9,5</td>
<td>103,57%</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>800,7</td>
<td>389,5</td>
<td>18,2</td>
<td>126,13%</td>
</tr>
<tr>
<td>1999</td>
<td>I</td>
<td>901,3</td>
<td>458,5</td>
<td>23</td>
<td>119,38%</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>1101,5</td>
<td>518,2</td>
<td>24,3</td>
<td>113,65%</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>1373,1</td>
<td>594,4</td>
<td>24,5</td>
<td>106,65%</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>1447,3</td>
<td>638,3</td>
<td>26,2</td>
<td>111,53%</td>
</tr>
<tr>
<td>2000</td>
<td>I</td>
<td>1327,4</td>
<td>722,1</td>
<td>28,3</td>
<td>112,58%</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>1696,6</td>
<td>807,0</td>
<td>28,3</td>
<td>104,41%</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>2037,8</td>
<td>944,6</td>
<td>27,8</td>
<td>102,40%</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>2043,8</td>
<td>1026,6</td>
<td>27,9</td>
<td>108,41%</td>
</tr>
<tr>
<td>2001</td>
<td>I</td>
<td>1900,9</td>
<td>1124,6</td>
<td>28,5</td>
<td>102,30%</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>2105,0</td>
<td>1212,3</td>
<td>28,9</td>
<td>105,20%</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>2487,9</td>
<td>1341,3</td>
<td>29,3</td>
<td>100,43%</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>2449,8</td>
<td>1444,2</td>
<td>29,8</td>
<td>106,09%</td>
</tr>
<tr>
<td>2002</td>
<td>I</td>
<td>2259,5</td>
<td>1555,1</td>
<td>30,8</td>
<td>102,16%</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>2525,7</td>
<td>1639,5</td>
<td>31,3</td>
<td>105,59%</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>3009,2</td>
<td>1797,2</td>
<td>31,5</td>
<td>101,17%</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>3023,1</td>
<td>1906,0</td>
<td>31,8</td>
<td>106,52%</td>
</tr>
<tr>
<td>2003</td>
<td>I</td>
<td>2868,8</td>
<td>2100,8</td>
<td>31,6</td>
<td>103,69%</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>3102,8</td>
<td>2337,0</td>
<td>30,7</td>
<td>101,78%</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>3567,2</td>
<td>2659,6</td>
<td>30,5</td>
<td>99,31%</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>3662,3</td>
<td>2786,1</td>
<td>29,7</td>
<td>107,27%</td>
</tr>
<tr>
<td>2004</td>
<td>I</td>
<td>3527,7</td>
<td>3254,1</td>
<td>28,5</td>
<td>105,75%</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>3938,2</td>
<td>3477,1</td>
<td>29,0</td>
<td>104,80%</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>4589,6</td>
<td>3600,0</td>
<td>29,2</td>
<td>101,01%</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>4723,3</td>
<td>3821,8</td>
<td>28,3</td>
<td>107,91%</td>
</tr>
<tr>
<td>2005</td>
<td>I</td>
<td>4364,9</td>
<td>4288,3</td>
<td>27,8</td>
<td>102,96%</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>5030,1</td>
<td>4583,3</td>
<td>28,0</td>
<td>107,27%</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>5990,4</td>
<td>5016,4</td>
<td>28,5</td>
<td>102,26%</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>6279,6</td>
<td>5347,6</td>
<td>28,7</td>
<td>109,10%</td>
</tr>
<tr>
<td>2006</td>
<td>I</td>
<td>5722,3</td>
<td>5936,0</td>
<td>28,10</td>
<td>103,34%</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>6343,0</td>
<td>6407,5</td>
<td>27,20</td>
<td>101,35%</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>7233,8</td>
<td>7257,4</td>
<td>26,81</td>
<td>98,62%</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>7332,2</td>
<td>7847,1</td>
<td>26,59</td>
<td>106,23%</td>
</tr>
<tr>
<td>2007</td>
<td>I</td>
<td>6566,2</td>
<td>8866,2</td>
<td>26,33</td>
<td>100,15%</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>7647,5</td>
<td>10039,3</td>
<td>25,86</td>
<td>106,59%</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>8852,2</td>
<td>10979,3</td>
<td>25,50</td>
<td>100,42%</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>9922,7</td>
<td>11693,0</td>
<td>24,65</td>
<td>115,75%</td>
</tr>
<tr>
<td>Год</td>
<td>Квартал</td>
<td>ИПЦ</td>
<td>Среднедушевые номинальные денежные доходы населения руб/мес)</td>
<td>Номинальная поквартальная ставка МИВОР</td>
<td>Расходы консолидированного бюджета, млрд.руб.</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-----</td>
<td>---</td>
<td>-------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>1994</td>
<td>I</td>
<td>1.40</td>
<td>120</td>
<td>53,20%</td>
<td>28,44</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>1.23</td>
<td>165</td>
<td>44,30%</td>
<td>46,30</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>1.19</td>
<td>220</td>
<td>31,30%</td>
<td>66,33</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>1.53</td>
<td>306</td>
<td>38,80%</td>
<td>93,77</td>
</tr>
<tr>
<td>1995</td>
<td>I</td>
<td>1.43</td>
<td>353</td>
<td>46,80%</td>
<td>71,69</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>1.25</td>
<td>487</td>
<td>29,40%</td>
<td>111,21</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>1.15</td>
<td>578</td>
<td>22,60%</td>
<td>136,15</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>1.13</td>
<td>701</td>
<td>15,70%</td>
<td>163,33</td>
</tr>
<tr>
<td>1996</td>
<td>I</td>
<td>1.10</td>
<td>683</td>
<td>25,85%</td>
<td>195,83</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>1.05</td>
<td>759</td>
<td>26,15%</td>
<td>179,10</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>1.01</td>
<td>780</td>
<td>22,64%</td>
<td>345,57</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>1.05</td>
<td>877</td>
<td>14,14%</td>
<td>492,83</td>
</tr>
<tr>
<td>1997</td>
<td>I</td>
<td>1.05</td>
<td>830</td>
<td>9,72%</td>
<td>256,60</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>1.03</td>
<td>913</td>
<td>8,08%</td>
<td>158,91</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>1.00</td>
<td>911</td>
<td>5,49%</td>
<td>395,70</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>1.02</td>
<td>1.019</td>
<td>7,39%</td>
<td>593,93</td>
</tr>
<tr>
<td>1998</td>
<td>I</td>
<td>1.03</td>
<td>829</td>
<td>9,66%</td>
<td>311,30</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>1.01</td>
<td>866</td>
<td>14,69%</td>
<td>157,30</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>1.44</td>
<td>914</td>
<td>22,52%</td>
<td>387,90</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>1.23</td>
<td>1.278</td>
<td>17,33%</td>
<td>552,77</td>
</tr>
<tr>
<td>1999</td>
<td>I</td>
<td>1.16</td>
<td>1.233</td>
<td>15,95%</td>
<td>297,80</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>1.07</td>
<td>1.463</td>
<td>12,75%</td>
<td>309,00</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>1.06</td>
<td>1.561</td>
<td>7,76%</td>
<td>445,70</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>1.04</td>
<td>1.986</td>
<td>9,27%</td>
<td>455,70</td>
</tr>
<tr>
<td>2000</td>
<td>I</td>
<td>1.04</td>
<td>1.749</td>
<td>6,31%</td>
<td>330,20</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>1.05</td>
<td>2.043</td>
<td>4,51%</td>
<td>430,70</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>1.04</td>
<td>2.207</td>
<td>3,52%</td>
<td>443,90</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>1.05</td>
<td>2.620</td>
<td>3,91%</td>
<td>666,80</td>
</tr>
<tr>
<td>2001</td>
<td>I</td>
<td>1.07</td>
<td>2.314</td>
<td>4,31%</td>
<td>445,70</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>1.05</td>
<td>2.757</td>
<td>4,38%</td>
<td>580,80</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>1.01</td>
<td>2.993</td>
<td>4,05%</td>
<td>629,20</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>1.04</td>
<td>3.384</td>
<td>4,40%</td>
<td>763,70</td>
</tr>
<tr>
<td>2002</td>
<td>I</td>
<td>1.05</td>
<td>3.260</td>
<td>4,53%</td>
<td>586,80</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>1.03</td>
<td>3.797</td>
<td>4,17%</td>
<td>805,70</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>1.01</td>
<td>4.042</td>
<td>3,94%</td>
<td>847,00</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>1.04</td>
<td>4.653</td>
<td>3,74%</td>
<td>1182,80</td>
</tr>
<tr>
<td>2003</td>
<td>I</td>
<td>1.05</td>
<td>4.300</td>
<td>2,91%</td>
<td>770,00</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>1.03</td>
<td>4.920</td>
<td>1,88%</td>
<td>962,10</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>1.01</td>
<td>5.107</td>
<td>1,83%</td>
<td>1005,70</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>1.03</td>
<td>6.141</td>
<td>2,10%</td>
<td>1227,10</td>
</tr>
<tr>
<td>2004</td>
<td>I</td>
<td>1.04</td>
<td>5.492</td>
<td>1,53%</td>
<td>889,60</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>1.03</td>
<td>5.922</td>
<td>2,20%</td>
<td>1122,80</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>1.02</td>
<td>6.310</td>
<td>2,12%</td>
<td>1132,90</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>1.03</td>
<td>7.579</td>
<td>1,56%</td>
<td>1524,40</td>
</tr>
<tr>
<td>2005</td>
<td>I</td>
<td>1.05</td>
<td>6.532</td>
<td>1,45%</td>
<td>1060,90</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>1.03</td>
<td>7.635</td>
<td>1,46%</td>
<td>1382,20</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>1.01</td>
<td>8.065</td>
<td>1,57%</td>
<td>1655,10</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>1.02</td>
<td>9.698</td>
<td>1,70%</td>
<td>2722,40</td>
</tr>
<tr>
<td>2006</td>
<td>I</td>
<td>1.05</td>
<td>8.026</td>
<td>1,31%</td>
<td>1274,20</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>1.01</td>
<td>9.806</td>
<td>1,57%</td>
<td>2707,60</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>1.01</td>
<td>10.088</td>
<td>1,45%</td>
<td>1499,40</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>1.02</td>
<td>10.950</td>
<td>1,64%</td>
<td>2902,80</td>
</tr>
<tr>
<td>2007</td>
<td>I</td>
<td>1.034</td>
<td>9.852,2</td>
<td>1,64%</td>
<td>1754,70</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>1.022</td>
<td>11.898,3</td>
<td>1,61%</td>
<td>2475,10</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>1.018</td>
<td>12.596,0</td>
<td>1,71%</td>
<td>2491,00</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>1.041</td>
<td>13.023,7</td>
<td>1,92%</td>
<td>4525,00</td>
</tr>
<tr>
<td>Year</td>
<td>Quarter</td>
<td>Среднеквартальный реальный курс долл. США, руб./долл. в ценах 4 кв. 2001г.</td>
<td>Цена на нефть (Urals, $US за баррель)</td>
<td>Реальная поквартальная ставка МИBOR (в % за кв. в ценах 4 кв. 2001г.)</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---</td>
<td>------------------</td>
<td>-----------------------------------</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>I</td>
<td>37.60</td>
<td>-1.68%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>30.42</td>
<td>23.23%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>31.65</td>
<td>9.38%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>31.39</td>
<td>-5.35%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>I</td>
<td>35.41</td>
<td>2.95%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>30.26</td>
<td>9.38%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>24.79</td>
<td>-0.79%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>21.73</td>
<td>18.54%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>I</td>
<td>21.36</td>
<td>17.12%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>20.66</td>
<td>18.58%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>21.17</td>
<td>3.81%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>19.98</td>
<td>11.10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>I</td>
<td>20.06</td>
<td>1.61%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>20.62</td>
<td>8.44%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>19.58</td>
<td>0.27%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>20.21</td>
<td>11.31%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>I</td>
<td>19.55</td>
<td>7.39%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>28.93</td>
<td>18.29%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>43.94</td>
<td>-6.98%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>I</td>
<td>46.52</td>
<td>-2.87%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>43.24</td>
<td>-0.78%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>40.88</td>
<td>1.04%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>39.20</td>
<td>-2.02%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>I</td>
<td>37.61</td>
<td>-5.56%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>36.02</td>
<td>0.09%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>34.36</td>
<td>1.09%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>31.99</td>
<td>-4.13%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>I</td>
<td>31.94</td>
<td>1.96%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>30.79</td>
<td>-0.78%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>31.08</td>
<td>3.61%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>29.80</td>
<td>-1.60%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>I</td>
<td>30.15</td>
<td>2.32%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>29.02</td>
<td>-1.34%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>28.86</td>
<td>2.75%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>27.36</td>
<td>-2.61%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>I</td>
<td>26.21</td>
<td>-0.75%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>25.04</td>
<td>0.10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>25.00</td>
<td>2.53%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>22.71</td>
<td>-4.82%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>I</td>
<td>20.61</td>
<td>1.96%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>20.04</td>
<td>-2.49%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>19.97</td>
<td>1.10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>17.92</td>
<td>-5.88%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>I</td>
<td>17.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>16.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>15.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>14.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>I</td>
<td>13.91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>13.29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>13.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>12.40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>I</td>
<td>12.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>11.29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>11.09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>9.26</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Источники данных: [38], [39], [20], [21].