DSpace Repository

Математическое обоснование нового электромагнитного зонда с тороидальными катушками для высокоразрешающего каротажа нефтегазовых скважин

Show simple item record

dc.contributor.author Эпов, Михаил Иванович ru_RU
dc.contributor.author Никитенко, Марина Николаевна ru_RU
dc.contributor.author Глинских, Вячеслав Николаевич ru_RU
dc.contributor.author Epov, Michail Ivanovich en
dc.contributor.author Nikitenko, Marina Nikolaevna en
dc.contributor.author Glinskikh, Viacheslav Nikolaevich en
dc.creator Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН ru_RU
dc.creator Новосибирский государственный университет ru_RU
dc.creator Trofimuk Institute of Petroleum Geology and Geophysics SB RAS en
dc.creator Novosibirsk State University en
dc.date.accessioned 2018-04-23T13:37:47Z
dc.date.available 2018-04-23T13:37:47Z
dc.date.issued 2018-03
dc.identifier.citation Эпов М. И., Никитенко М. Н., Глинских В. Н. Математическое обоснование нового электромагнитного зонда с тороидальными катушками для высокоразрешающего каротажа нефтегазовых скважин // Вестн. НГУ. Серия: Информационные технологии. 2018. Т. 16, № 1. С. 113–129. DOI 10.25205/1818-7900-2018-16-1-113-129. ISSN 1818-7900. ru_RU
dc.identifier.citation Epov M. I., Nikitenko M. N., Glinskikh V. N. Mathematical Substantiation of a New Electromagnetic Tool with Toroidal Coils for High-Resolution Logging of Oil and Gas Wells. Vestnik NSU. Series: Information Technologies, 2018, vol. 16, no. 1, p. 113–129. DOI 10.25205/1818-7900-2018-16-1-113-129. ISSN 1818-7900. (In Russ.) en
dc.identifier.issn 1818-7900
dc.identifier.other DOI 10.25205/1818-7900-2018-16-1-113-129
dc.identifier.uri http://lib.nsu.ru:8081/xmlui/handle/nsu/13535
dc.description.abstract Представленная работа посвящена обоснованию нового электромагнитного зонда для каротажа нефтегазовых скважин на основе компьютерного моделирования. Получено решение прямой задачи электромагнитного каротажа для тороидального источника в цилиндрически-слоистой геоэлектрической модели. Разработаны комплексы алгоритмов и компьютерных программ для анализа сигналов электромагнитного зонда с тороидальными катушками в пространственно неоднородных анизотропных средах. Путем масштабного компьютерного моделирования выполнено обоснование оптимальной конфигурации зондовой системы и исследованы ее возможности изучения макроанизотропных свойств геологических сред. ru_RU
dc.description.abstract The presented work is devoted to the substantiation of a new electromagnetic tool for logging oil and gas wells on the basis of computer simulation. The solution of the direct problem of electromagnetic logging for a toroidal source in a cylindrically-layered geoelectric model is obtained. Complexes of algorithms and computer programs for the analysis of signals of the electromagnetic tool with toroidal coils in spatially inhomogeneous anisotropic media have been developed. By means of large-scale computer simulation, the optimal configuration of the tool system is substantiated and its capabilities for studying macroanisotropic properties of geological media are investigated. en
dc.language.iso ru ru_RU
dc.publisher Новосибирский государственный университет ru_RU
dc.subject компьютерное моделирование ru_RU
dc.subject прямая задача ru_RU
dc.subject геоэлектрическая модель ru_RU
dc.subject анизотропная среда ru_RU
dc.subject электромагнитный каротаж ru_RU
dc.subject зонд с тороидальными катушками ru_RU
dc.subject computer simulation en
dc.subject direct problem en
dc.subject geoelectric model en
dc.subject anisotropic medium en
dc.subject electromagnetic logging en
dc.subject tool with toroidal coils en
dc.title Математическое обоснование нового электромагнитного зонда с тороидальными катушками для высокоразрешающего каротажа нефтегазовых скважин ru_RU
dc.title.alternative Mathematical Substantiation of a New Electromagnetic Tool with Toroidal Coils for High-Resolution Logging of Oil and Gas Wells en
dc.type Article ru_RU
dc.description.reference 1. Anderson B. I., Barber T. D., Lüling M. G. The response of induction tools to dipping, anisotropic formations // Transactions of the SPWLA 36th Annual Logging Symposium. 1995. Pap. D. 2. Graciet S., Shen L. C. Simulation of induction and MWD resistivity tools in anisotropic dipping beds // Transactions of the SPWLA, 38th Annual Logging Symposium. 1997. Pap. M. 3. Hagiwara T. A new method to determine horizontal-resistivity in anisotropic formations without prior knowledge of relative dip // Transactions of the SPWLA, 37th Annual Logging Symposium. 1996. Pap. Q. 4. Hagiwara T., Banning E. J., Ostermeier R. M., Haugland M. S. Effects of Mandrel, Borehole, and Invasion for Tilt-Coil Antennas // SPE Reservoir Evaluation & Engineering. 2005. Vol. 8. No. 3. P. 255–263. SPE-84245-PA. 5. Krieghauser B., Fanini O., Forgang S., Itskovich G., Rabinovich M., Tabarovsky L., Yu L., Epov M., Gupta P., Horst J. van der. A new multicomponent induction logging tool to resolve anisotropic formations // Transactions of the SPWLA, 41st Annual Logging Symposium. 2000. Pap. D. 6. Kriegshäuser B., Fanini O., Yu L., Gupta P. Advanced inversion techniques for multicomponent induction log data // SEG 2000 Expanded Abstracts. 2000. Vol. 19. P. 1810–1813. 7. Mollison R., Fanini O., Kriegshauser B., Yu L., Ugueto G., Popta J. Impact of multicomponent induction technology on a deepwater turbidite sand hydrocarbon saturation evaluation // Transactions of the SPWLA, 42nd Annual Logging Symposium. 2001. Pap. T. 8. Rabinovich M., Bespalov A., Corley B., Merchant G., Wang T., Quint E., Morrison J. Effect of fractures on multi-component and multiarray induction logs // Transactions of the SPWLA, 45th Annual Logging Symposium. 2004. Pap. UU. 9. Sun K., Omeragic D., Mihn Ch. C. et al. Evaluation of resistivity anisotropy and formation dip from directional electromagnetic tools while drilling. SPWLA 51st Annual Logging Symposium. June 19–23, 2010. 10. Tabarovsky L. A., Rabinovich M. B. Real time 2D inversion of induction logging data // Journal of Applied Geophysics. 1998. Vol. 38. Iss. 4. Р. 251–275. 11. Tabarovsky L., Rabinovich M. Geosteering in anisotropic formations using multicomponent induction measurements. United States Patent 7269515. March 4, 2005 12. Wang H., Davydycheva S., Zhou J., Frey M., Barber T., Abubakar A., Habashy T. Sensitivity Study and Inversion of the Fully-Triaxial Induction Logging in Cross-bedded Anisotropic Formation // 78th SEG Annual Meeting. 2008. [Электронный ресурс]. 13. Wang T. A weak-anisotropy approximation to multicomponent induction responses in cross-bedded formations // Geophysics. – 2006. Vol. 71. Iss. 4. P. F61–F66. 14. Wang T., Yu L., Fanini O. Multicomponent induction response in a borehole environment // Geophysics. 2003. Vol. 68. Iss. 5. P. 1510–1518. 15. Wang T., Yu L., Fanini O., Kriegshauser B., Merchant G. Understanding multicomponent induction logs in a 3-d borehole environment // Transactions of the SPWLA, 42nd Annual Logging Symposium. 2001. Pap. GG. 16. Yu L., Fanini O., Kriegshauser B., Koelman J. M. V., Popta J. van. Enhanced evaluation of low-resistivity reservoirs using multicomponent induction log data // Petrophysics. 2001. Vol. 42. P. 611–623. 17. Yu L., Fanini O. N., Kriegshauser B. F., Mollison R., Koelman J. M. V., Popta J. van. A new multicomponent induction logging tool for evaluating electrically anisotropic reservoirs // EAGE. First Break. 2000. Vol. 18. No. 12. P. 511–519. 18. Zhang Z., Yu L., Kriegshauser B., Chunduru R. Simultaneous determination of relative angles and anisotropic resistivity using multicomponent induction logging data // Transactions of the SPWLA, 42nd Annual Logging Symposium. 2001. Pap. Q. 19. Zhang Zh., Yu L., Kriegshäuser B., Tabarovsky L. Determination of relative angles and anisotropic resistivity using multicomponent induction logging data // Geophysics. 2004. Vol. 69. Iss. 4. P. 898–908. 20. Zhdanov M. S., Kennedy W. D., Cheryauka A. B., Peksen E. Principles of tensor induction well logging in a deviated well in an anisotropic medium // Transactions of the SPWLA, 42st Annual Logging Symposium. 2001. – Pap. R. 21. Zhdanov M. S., Tartaras E., Gribenko A. Fast 3D Imaging from a Single Borehole Using Tensor Induction Logging Data // Petrophysics. 2004. Vol. 45. No. 2. P. 167–178. 22. Эпов М. И., Глинских В. Н., Никитенко М. Н. Способ измерения удельной электропроводности и электрической макроанизотропии горных пород. Патент на изобретение RU 2525149. Опубл. 10.08.2014. Бюлл. № 22. 23. Эпов М. И., Еремин В. Н., Петров А. Н., Глинских В. Н. Электромагнитный зонд для каротажа в нефтегазовых скважинах. Патент на изобретение RU 2583867. Опубл. 10.05.2016. Бюлл. № 13. 24. Эпов М. И., Еремин В. Н., Петров А. Н., Глинских В. Н., Суродина И. В., Киселев В. В. Устройство для регистрации характеристик электромагнитного поля с использованием тороидальных катушек. Патент на изобретение RU 2578774. Опубл. 27.03.2016. Бюлл. № 9. 25. Эпов М. И., Глинских В. Н., Еремин В. Н., Никитенко М. Н., Петров А. Н., Суродина И. В., Михайлов И. В. Математическое и физическое моделирование сигналов электромагнитного зонда для изучения макроанизотропии осадочных отложений. 19-я научно-практическая конференция «Геомодель 2017» – Вопросы геологоразведки и разработки месторождений нефти и газа: расширенные тезисы докладов, 2017. ID 43809. 26. Epov M. I., Glinskikh V. N., Eremin V. N., Nikitenko M. N., Petrov A. N., Mikhaylov I. V. Electromagnetic tool for high-resolution logging: theoretical and experimental studies. SPE Russian Petroleum Technology Conference. Moscow, 16–18 October 2017. 27. Светов Б. С. Электродинамические основы квазистационарной геоэлектрики. М.: Изд-во ИЗМИРАН, 1984. 183 с. 28. Кауфман А. А. Теория индукционного каротажа. Новосибирск: Наука, 1965. 236 с. 29. Табаровский Л. А. Применение метода интегральных уравнений в задачах геоэлектрики. Новосибирск: Наука, 1975. 144 с. 30. Корн Г., Корн Т. Справочник по математике. М.: Наука, 1984. 831 с. 31. Градштейн И. С., Рыжик И. М. Таблицы интегралов, рядов и произведений. М.: Физматгиз, 1962. 1100 с. ru_RU
dc.description.reference 1. Anderson B. I., Barber T. D., Lüling M. G. The response of induction tools to dipping, anisotropic formations. Transactions of the SPWLA 36th Annual Logging Symposium, 1995, pap. D. 2. Graciet S., Shen L.C. Simulation of induction and MWD resistivity tools in anisotropic dipping beds. Transactions of the SPWLA, 38th Annual Logging Symposium, 1997, pap. M. 3. Hagiwara T. A new method to determine horizontal-resistivity in anisotropic formations without prior knowledge of relative dip. Transactions of the SPWLA, 37th Annual Logging Symposium, 1996, pap. Q. 4. Hagiwara T., Banning E. J., Ostermeier R. M., Haugland M. S. Effects of Mandrel, Borehole, and Invasion for Tilt-Coil Antennas. SPE Reservoir Evaluation & Engineering, 2005, vol. 8. no. 3, p. 255–263. SPE-84245-PA. 5. Krieghauser B., Fanini O., Forgang S., Itskovich G., Rabinovich M., Tabarovsky L., Yu L., Epov M., Gupta P., van der Horst J. A new multicomponent induction logging tool to resolve anisotropic formations. Transactions of the SPWLA, 41st Annual Logging Symposium, 2000, pap. D. 6. Kriegshäuser B., Fanini O., Yu L., Gupta P. Advanced inversion techniques for multicomponent induction log data. SEG 2000 Expanded Abstracts, 2000, vol. 19, p. 1810–1813. 7. Mollison R., Fanini O., Kriegshauser B., Yu L., Ugueto G., Popta J. Impact of multicomponent induction technology on a deepwater turbidite sand hydrocarbon saturation evaluation. Transactions of the SPWLA, 42nd Annual Logging Symposium, 2001, pap. T. 8. Rabinovich M., Bespalov A., Corley B., Merchant G., Wang T., Quint E., Morrison J. Effect of fractures on multi-component and multiarray induction logs. Transactions of the SPWLA, 45th Annual Logging Symposium, 2004, pap. UU. 9. Sun K., Omeragic D., Mihn Ch. C. et al. Evaluation of resistivity anisotropy and formation dip from directional electromagnetic tools while drilling. SPWLA 51st Annual Logging Symposium, June 19–23, 2010. 10. Tabarovsky L. A., Rabinovich M. B. Real time 2D inversion of induction logging data. Journal of Applied Geophysics, 1998, vol. 38, iss. 4, p. 251–275. 11. Tabarovsky L., Rabinovich M. Geosteering in anisotropic formations using multicomponent induction measurements. United States Patent 7269515. March 4, 2005. 12. Wang H., Davydycheva S., Zhou J., Frey M., Barber T., Abubakar A., Habashy T. Sensitivity Study and Inversion of the Fully-Triaxial Induction Logging in Cross-bedded Anisotropic Formation. 78th SEG Annual Meeting, 2008. 13. Wang T. A weak-anisotropy approximation to multicomponent induction responses in cross-bedded formations. Geophysics, 2006, vol. 71, iss. 4, p. F61–F66. 14. Wang T., Yu L., Fanini O. Multicomponent induction response in a borehole environment. Geophysics, 2003, vol. 68, iss. 5, p. 1510–1518. 15. Wang T., Yu L., Fanini O., Kriegshauser B., Merchant G. Understanding multicomponent induction logs in a 3-d borehole environment. Transactions of the SPWLA, 42nd Annual Logging Symposium, 2001, pap. GG. 16. Yu L., Fanini O., Kriegshauser B., Koelman J. M. V., van Popta J. Enhanced evaluation of low-resistivity reservoirs using multicomponent induction log data. Petrophysics, 2001, vol. 42, p. 611–623. 17. Yu L., Fanini O. N., Kriegshauser B. F., Mollison R., Koelman J. M. V., van Popta J. A new multicomponent induction logging tool for evaluating electrically anisotropic reservoirs. EAGE. First Break, 2000, vol. 18, no. 12, p. 511–519. 18. Zhang Z., Yu L., Kriegshauser B., Chunduru R. Simultaneous determination of relative angles and anisotropic resistivity using multicomponent induction logging data. Transactions of the SPWLA, 42nd Annual Logging Symposium, 2001, pap. Q. 19. Zhang Zh., Yu L., Kriegshäuser B., Tabarovsky L. Determination of relative angles and anisotropic resistivity using multicomponent induction logging data. Geophysics, 2004, vol. 69, iss. 4, p. 898–908. 20. Zhdanov M. S., Kennedy W. D., Cheryauka A. B., Peksen E. Principles of tensor induction well logging in a deviated well in an anisotropic medium. Transactions of the SPWLA, 42st Annual Logging Symposium, 2001, pap. R. 21. Zhdanov M. S., Tartaras E., Gribenko A. Fast 3D Imaging from a Single Borehole Using Tensor Induction Logging Data. Petrophysics, 2004, vol. 45, no. 2, p. 167–178. 22. Epov M. I., Glinskikh V. N., Nikitenko M. N. Method for measuring the specific electric conductivity and electric macroanisotropy of rocks. Patent for invention RU 2525149. Publ. 10.08.2014. Paper. № 22. (In Russ.) 23. Epov M. I., Eremin V. N., Petrov A. N., Glinskikh V. N. Electromagnetic tool for logging in oil and gas wells. Patent for invention RU 2583867. Publ. 10.05.2016. Paper. № 13. (In Russ.) 24. Epov M. I., Eremin V. N., Petrov A. N., Glinskikh V. N., Surodina I. V., Kiselev V. V. Device for recording characteristics of an electromagnetic field using toroidal coils. Patent for invention RU 2578774. Publ. 27.03.2016. Paper. № 9. (In Russ.) 25. Epov M. I., Glinskikh V. N., Eremin V. N., Nikitenko M. N., Petrov A. N., Surodina I. V., Mikhaylov I. V. Mathematical and Physical Simulation of Responses of An Electromagnetic Logging Tool for Studying Macroanizotropy of Sedimentary Deposits. 19th Scientific and Practical Conference "Geomodel 2017" – Issues of geological exploration and development of oil and gas fields: extended abstracts of papers, 2017. ID 43809. (In Russ.) 26. Epov M. I., Glinskikh V. N., Eremin V. N., Nikitenko M. N., Petrov A. N., Mikhaylov I. V. Electromagnetic tool for high-resolution logging: theoretical and experimental studies. SPE Russian Petroleum Technology Conference. Moscow, 16–18 October 2017. 27. Svetov B. S. Electrodynamic foundations of quasi-stationary geoelectrics. Moscow, IZMIRAN Publishing House, 1984, 183 p. (In Russ.) 28. Kaufman A. A. Theory of induction logging. Novosibirsk, Science, 1965, 236 p. (In Russ.) 29. Tabarovsky L. A. Application of the method of integral equations in problems of geoelectrics. Novosibirsk, Science, 1975, 144 p. (In Russ.) 30. Korn G., Korn T. Handbook of Mathematics. Moscow, Science, 1984, 831 p. (In Russ.) 31. Gradshtein I. S., Ryzhik I. M. Tables of integrals, series and products. Moscow, Fizmatgiz, 1962, 1100 p. (In Russ.) en
dc.subject.udc 519.6, 550.832
dc.relation.ispartofvolume 16
dc.relation.ispartofnumber 1
dc.relation.ispartofpages 113–129


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account