Новосибирские ученые совместно с иностранными коллегами установили новый способ создания незамерзающих ионных жидкостей

Ученые Новосибирского научного центра совместно с группой исследователей из Университета Ростока (Германия) под руководством ведущего специалиста по экспериментальному и теоретическому описанию водородосвязанных систем профессора Ральфа Людвига установили новый способ создания незамерзающих ионных жидкостей. Отчет об исследовании был опубликован в виде полноценной статьи в журнале Angewandte Chemie.

Ионные жидкости в широком смысле представляют собой любые расплавленные соли, например, хлорид натрия (поваренная соль), который плавится при температуре выше 800 градусов Цельсия. В настоящее время под термином «ионные жидкости» чаще всего подразумевают соли, температура плавления которых ниже температуры кипения воды (100 градусов Цельсия) — так называемые ионные жидкости первого поколения.

— Сегодня ионные жидкости — это одно из наиболее актуальных направлений в материаловедении, которому придается большое значение как научным сообществом, так и людьми, связанными с индустрией. Это можно легко обосновать: дело в том, что некоторое время назад исследователям удалось придумать синтетический подход, который позволяет синтезировать очень разные типы ионных жидкостей, которые плавятся буквально при комнатных температурах (20–40 градусов Цельсия), — рассказал старший научный сотрудник лаборатории структуры и функциональных свойств молекулярных систем Физического факультета НГУ и Института катализа им. Г. К. Борескова СО РАН Даниил Колоколов.

Для практического применения такая разработка имеет большой вес, так как ионные жидкости используются в самых разных областях. Например, их можно использовать для экстракции химических веществ из смесей, в качестве криопротекторов (добавление ионной жидкости в водный раствор препятствует его фазовым переходам при воздействии низких температур, например, при заморозке биологического материала водный раствор не кристаллизуется), а также в качестве проводящей среды (электролитов). Кроме того, ионные жидкости предполагается использовать для закалки металлов и в качестве заполнения стеклянного тела глаза, так как ионная жидкость не высыхает, не испаряется и способна поддерживать необходимые функции органа в разных температурных режимах.

— Ионные жидкости состоят из двух видов заряженных частиц — катионов и анионов, которые при слиянии образуют кристаллическую форму. Однако за счет наличия больших органических заместителей возникает ситуация, когда большая часть заряда экранирована обычной нейтральной молекулой. То есть, несмотря на взаимодействие, структура остается подвижной и сохраняет свойства жидкости, — объяснил принципы работы простой ионной жидкости Даниил Колоколов. — Наше внимание было коренным образом обращено к протонно-ионным жидкостям, которые особенно интересны в качестве электролитов – за счет образования водородных связей образуется возможность эффективной передачи протонов проводимости. Помимо взаимодействия зарядами, эти жидкости способы образовывать водородную связь, усиленную ионным взаимодействием, – так называемые солевые мосты.

lll.png


Исследователи провели работу над изучением способности ионных жидкостей к кристаллизации. Оказалось, что одни жидкости замерзают и превращаются в кристалл, а другие способны перейти в переохлажденное состояние, а затем в стекло – в этом состоянии молекулы сохраняют достаточную подвижность на локальном уровне.

— Нам удалось отследить влияние молекулярной структуры на процесс кристаллизации вещества и показать это экспериментально. Выяснилось, что все зависит от строения катионов. Если модифицировать катион при помощи гидроксогруппы (OH), внутри ионной жидкости возникнет новый тип водородных связей между двумя катионами. Это несколько парадоксально — водородная связь, которая соединяет две одинаково заряженные частицы, которые по идее должны отталкиваться друг от друга, — отметил Даниил Колоколов. По словам исследователя, вещества, в которых фигурирует связь подобного рода, не кристаллизуются, а стеклуются, сохраняя внутреннюю динамику ионов.

— Сейчас мы работаем над получением ионных жидкостей, которые могли бы работать при реальных атмосферных условиях, в минусовой температуре. Это необходимые для промышленности условия. Даже небольшое понижение температуры плавления будет очень важно, особенно для электролитов, — добавил ученый.

Исследование получилось междисциплинарным: новосибирские ученые исследовали структуру водородных связей и подвижность на молекулярном уровне, а их коллеги из Германии синтезировали и изучали жидкости с точки зрения их фазового поведения и теоретических расчетов: измеряли температуру плавления, вязкость и другие параметры.