Большинство используемых в промышленности и быту углеводородов получают из легкой нефти. Однако в последние годы все чаще встает вопрос о поиске методов обработки тяжелой нефти, поскольку запасы легкой истощаются. Научно-образовательный центр «Машинное обучение и анализ больших данных» Новосибирского государственного университета разработал Telegram-бот Nanoparticles для сканирования и анализа микроскопических изображений, который научная группа из Института катализа им. Г. К. Борескова СО РАН использует для создания катализатора, превращающего тяжелую нефть в легкую.
Ученые, занимающиеся темплатным синтезом, используют наш сервис для подбора оптимальной концентрации и размеров полимерных шариков, используемых при синтезе катализатора переработки тяжелой нефти. Если полости, оставшиеся после выгорания полимерных шариков при нагревании катализатора, окажутся слишком маленькими, длинные молекулы углеводорода не смогут встроиться и вступить в реакцию с активным компонентом – платиной. Если же, наоборот, пространства будет слишком много, химическая реакция по расщеплению молекулы будет протекать медленнее. Nanoparticles позволяет делать оперативные замеры размеров шариков с точностью и скоростью, недоступной для ручных методов. Это достигается за счет того, что нейросеть за несколько секунд анализирует изображение целиком, находит и оцифровывает тысячи объектов. В то время как человек за то же время успевает измерить не более одной частицы.
Сейчас многие компании используют чат-боты. Это проще, потому что Telegram, Viber и другие платформы уже почувствовали потребности и разработали множество разных сервисов, и каналы – это готовый для использования интерфейс. Для обучения нейросети мы работали с группой исследователей из Института катализа, использующей сканирующую туннельную микроскопию, а также с коллегами из Института цитологии и генетики СО РАН. Сейчас добавилась исследователи из Института катализа, которые работают с просвечивающей электронной, сканирующей электронной и оптической микроскопией.
Исходное изображение полистирольных частиц в масштабе 120 х 98 мкм, полученное методом оптической микроскопии; контуры частиц, распознанные нейронной сетью.