В ближайшие дни пройдёт два «Математических коллоквиума»:
Аналитическая геометрия в вузе изучает вещественные кривые и поверхности степени не больше двух. Эта геометрия основана на подходе Декарта, который с помощью выбора системы координат связал геометрию с алгеброй. В ней эллипсы, параболы, гиперболы, а также эллипсоиды, параболоиды и гиперболоиды задаются квадратными алгебраическими уравнениями в плоскости или пространстве. В 19-м веке математики стали активно изучать свойства кривых и поверхностей, задаваемых полиномиальными уравнениями более высокой степени. В результате зародилась алгебраическая геометрия, изучающая алгебраические множества (задаваемые системами алгебраических уравнений) в векторном пространстве над произвольным полем K.
Наиболее плодотворной является алгебраическая геометрия над полем комплексных чисел. Её методы оказали существенное влияние на решение проблемы Ферма, в ее рамках сформулирована гипотеза Ходжа о комплексных циклах, входящая в список Института Клэя семи проблем тысячелетия. Язык этой геометрии надежно внедряется в ряд физических концепций, например, в теории струн при описании сильных взаимодействий и в квантовой теории поля. Другие популярные варианты выбора поля K - это неархимедовы поля. Связанная с ними аналитическая геометрия называется тропической геометрией. Важную роль в становлении тропической геометрии сыграло понятие амёбы, введённое в 1994 году в фундаментальной монографии Гельфанда-Капранова-Зелевинского. Об элементах тропической геометрии мы поговорим в ходе семинара.
В докладе будет приведен краткий обзор актуальных задач релятивистской астрофизики и требований к математическому аппарату для решения подобных задач. Будут приведены детали авторской методики для численного решения уравнений специальной релятивистской гидродинамики, описаны детали параллельной реализации с использованием различных технологий и архитектур. Будет предложена дискуссия об использовании машинного обученияв решении задач релятивистской астрофизики. Будут приведены результаты вычислительных экспериментов для изучения релятивистских течений газа.
Подробнее — на сайте Математического коллоквиума http://sobolevmath.tilda.ws.